
The Circulex Protocol
DRAFT

T. J. M. Makarios

Revision: 7a5af96
January 26, 2023

Abstract

The circulex protocol is specified. Circulex is a system for making
payments via circular exchanges through chains of trust.

This is currently a draft.

Contents

1 Introduction 4
1.1 Payments through chains of trust 4
1.2 Problems and existing solutions 5
1.3 Overview of circulex’s solution 6

1.3.1 Decomposing circular exchanges 6
1.3.2 Avoiding the FLP impossibility result 7
1.3.3 Speed, safety, and liveness 7
1.3.4 Pathfinding . 8
1.3.5 Uniqueness and reversibility 9
1.3.6 Privacy . 10

2 Typical operation 11
2.1 Establishing relationships . 11

2.1.1 Human interactions . 11
2.1.2 Computer interactions 12

2.2 Pathfinding . 13
2.2.1 Human interactions . 13
2.2.2 Computer interactions 14

2.3 Execution . 17

1

2.3.1 Human interactions . 17
2.3.2 Computer interactions 18

2.4 Missing messages . 19

3 Prerequisites and other standards 19
3.1 BCP 14 . 19
3.2 ASN.1 . 20
3.3 Timekeeping . 21
3.4 Hashes . 22
3.5 Signature scheme . 23
3.6 Communication with peers . 26

4 Definitions 26
4.1 Identity . 26
4.2 Contact details . 27
4.3 Currency . 27
4.4 Amount . 28
4.5 Target . 28
4.6 Reference header . 29
4.7 Payment request . 29
4.8 URI scheme . 30
4.9 Path types . 31
4.10 Transaction identifier . 32
4.11 Signed payment path . 33

5 Messages 35
5.1 Invitation . 36

5.1.1 Bandwidth limit . 36
5.1.2 Invitation . 38

5.2 Statement . 41
5.2.1 Statement subject . 41
5.2.2 Range . 41
5.2.3 Statement . 42

5.3 Relay offer . 45
5.3.1 Latency probability object 45
5.3.2 Relay offer . 46

5.4 Ping . 48
5.5 Pong . 49
5.6 Relay request . 49

5.6.1 Relay request context 49
5.6.2 Relay request . 50

2

5.7 Relay peering message . 52
5.8 Latency report . 53

5.8.1 Latency profile . 53
5.8.2 Latency report . 54

5.9 Relay rejection . 54
5.10 Hint . 55

5.10.1 Hint subject . 55
5.10.2 Hint body . 55
5.10.3 Hint . 56

5.11 Partial agreement . 57
5.11.1 Payment specification 57
5.11.2 Bilateral agreement . 60
5.11.3 Partial agreement . 63

5.12 Complete agreement . 65
5.12.1 Executing a transaction 66
5.12.2 Reversing a transaction 67
5.12.3 Committing to non-execution 68
5.12.4 Partially executing a transaction 68
5.12.5 Partially reversing a transaction 69

5.13 Receipt . 70
5.14 Tally . 71
5.15 Missing information request 71

5.15.1 Request for invitation 73
5.15.2 Request for statements 73
5.15.3 Request for hint . 73
5.15.4 Request for partial agreement 74
5.15.5 Request for receipts . 74
5.15.6 Request for tally . 74

5.16 Freeze message . 75

6 Security considerations 75
6.1 OSIRIS . 76

6.1.1 Theft . 76
6.1.2 Denial of service . 78

6.2 Big Brother . 79
6.3 Goliath Corporation . 80

6.3.1 Fear, uncertainty, and doubt 80
6.3.2 Circulex as a service 81
6.3.3 Dominance of trust . 81
6.3.4 Software dominance . 82
6.3.5 Peripheral services . 82

3

6.4 Combined threat . 83

1 Introduction

1.1 Payments through chains of trust

There’s a long-standing system of money transfer called hawala [31], which
uses networks of trust relationships to transfer value quickly over long dis-
tances, often without any physical goods being moved at all. In some ways,
payments between customers of different banks (including foreign exchange
transactions) are executed in a hawala-like way, but hawala is considered to
be “informal”, and it relies more on trust relationships, and less on the legal
enforceability of contracts — the former being more reliable in many parts
of the world.

A project now known as Rumplepay had the idea of creating an automatic
hawala-like network over the internet [33].

It’s worth looking at an example of the kind of transaction such a system
might enable:

Example 1. Alice wishes to buy a smartphone from Frank for 600 New Zea-
land dollars (nzd); Frank is willing to sell the phone for 450,000 Korean won
(krw). Alice agrees to pay her friend Bob 600 nzd whenever they next meet
in person; Bob’s friend Carlos owes him 500 United States dollars (usd), so
Bob forgives 400 usd of Carlos’s debt; Carlos agrees to pay his friend Denise
the 400 usd he’s gained from Bob; Denise, in turn agrees to pay her friend
Edith 450,000 krw; finally, Edith pays her friend Frank the 450,000 krw
she got from Denise, and Frank sends the phone to Alice.

In this way, everyone in the chain pays as much as they receive, or vol-
untarily exchanges currency with other currency (or with a smartphone) at
an acceptable rate.

One thing to note about these transactions is that they are, in gen-
eral, not simply paths, but cycles. The cyclic nature of such transactions
is discussed and illustrated in Section 2.2 (particularly Figure 2.6) of Jan
Michelfeit’s thought-provoking Master’s thesis [20] about transaction rout-
ing in a Rumplepay-like network (then referred to as Ripple). In Example
1, obligations to pay money flow from Alice to Bob to Carlos to Denise to
Edith to Frank, but the cycle is completed by Frank sending a smartphone
to Alice. In this document, such transactions are called circular exchanges.

Furthermore, it is not only the payments, but also the trust relationships
that form a cycle. There is at least a one-way trust relationship between

4

Alice and Frank; Alice trusts that if Frank receives the 450,000 krw she is
trying to send him, then he will send her the smartphone.

It’s worth noting that the trust relationships don’t have to be symmet-
rical. In Example 1, Bob already trusts Carlos to repay the 500 usd debt;
Carlos need not trust Bob to pay 400 usd, because if they have a dispute
about the execution of the transaction, then Carlos can simply refuse to
repay more than 100 usd. And Carlos does not need to trust Denise, ei-
ther, because if there is a dispute between them about the execution of the
transaction, then he can simply refuse to pay her the 400 usd.

The direction in which the payments flow is, in this document, called
the paywise direction; the opposite direction is called the talkwise direction,
because, in the circulex protocol, messages confirming (and, in fact, causing)
the execution of a transaction are sent in that direction.

1.2 Problems and existing solutions

Automating circular exchanges requires solving two problems: the first prob-
lem is that of discovering efficient paths through which to send payments; the
second is that of coordinating agreements to actually execute such payments.

A project called Stellar [36] solves these problems by maintaining a single
authoritative ledger, which records the trust relationships and outstanding
debts between entities. It aims to distribute authority over the ledger among
many independent entities, but as of November 2022, it’s still the case that
the safety of the entire Stellar network could be compromised by the actions
of nodes in a single jurisdiction, perhaps under legal duress [37]. Further,
even if it successfully decentralizes authority more than it is at present, Stellar
is still somewhat centralized, around a global, public ledger.

However, a fully decentralized protocol implementing circular exchanges
would face its own problems. Without a single authoritative ledger, chains of
payments like that in Example 1 would require everyone in the chain to agree
to simultaneously update their ledgers; otherwise, if Alice pays Bob and then
finds out that Denise, who Alice neither knows nor trusts, has failed to pay
Edith, and, as a consequence, Frank has not sent Alice the phone, then Alice
will be justifiably upset.

This is an example of the so-called Byzantine generals problem [14], in
which a number of participants try to ensure that all of those behaving cor-
rectly agree on a course of action, even if a small number of the participants
behave arbitrarily, either maliciously or accidentally.

A theorem known as the FLP impossibility result places a limit on what
can be achieved by solutions to the Byzantine generals problem in an asyn-
chronous setting — that is, when no assumptions can be made about the

5

speed at which participants in a protocol perform their necessary computa-
tions, or about the speed at which messages are delivered [9]. In particular, it
states that no asynchronous consensus protocol in which there is more than
one possible outcome, but which prevents well behaved participants from
disagreeing on the outcome, can guarantee that any of its well behaved par-
ticipants will eventually commit to one of the possible outcomes, even if there
is only one misbehaving participant, and even if its misbehaviour is simply
an eventual failure to continue communicating, rather than the sending of
erroneous messages.

In practice, consensus protocols avoid the FLP impossibility result ei-
ther by placing requirements on the speed of computation and delivery of
messages, or by ensuring that although non-termination is possible, its prob-
ability approaches 0 as time approaches infinity [32]. Such protocols can be
designed to prevent disagreements between well behaved participants even if
a certain proportion of the participants are acting maliciously [19].

However, in the case of circular exchanges, no participant can guarantee
even a minimum proportion of trustworthy participants, since each partici-
pant in a given transaction is only assumed to have a trust relationship with
the person they are paying and with the person who is paying them, and
there may be arbitrarily many other participants.

1.3 Overview of circulex’s solution

1.3.1 Decomposing circular exchanges

Circulex solves this problem by decomposing circular exchanges into bilateral
agreements in which one participant agrees to pay the other in exchange
for the other participant providing the first with proof (before a specified
deadline) that the overall circular exchange is being executed.

So in Example 1, Carlos would agree to pay Denise (his paywise neigh-
bour) on the condition that she provides him with timely proof that the
whole circular exchange is going ahead. This proof (called a complete agree-
ment) is valuable to Carlos because he can forward it to Bob (his talkwise
neighbour), thus triggering Bob’s obligation to forgive 400 usd of Carlos’s
debt.

Because the transaction has been decomposed into bilateral agreements
between participants with explicit trust relationships, any failure to properly
execute the protocol has a direct negative effect only on the participant to
blame for the failure, or on a participant who explicitly chose to trust the
one to blame. This ensures that the incentive to prevent failures — by taking
care to implement the protocol correctly and by choosing carefully who to

6

trust — is as squarely as possible in the hands of those most able to prevent
those failures.

1.3.2 Avoiding the FLP impossibility result

Circulex avoids the FLP result by requiring the complete agreement to be
supplied before a specific deadline in order to trigger payment obligations;
thus the protocol is not asynchronous. However, each deadline is agreed on
by the two participants it affects — the one providing the complete agree-
ment and the one receiving it. Furthermore, each participant can wait till
they know the deadlines required by their potential neighbours in one direc-
tion before choosing the deadlines for their potential neighbours in the other
direction. This means that they can avoid being forced to relay messages
faster than they are sure is possible.

For circular exchanges, this means of avoiding the FLP result is preferable
to the technique of ensuring almost certain eventual consensus while allowing
for the possibility of so-called perpetual pre-emption. This is because many
participants will not want transactions to be in limbo for an indefinite length
of time, unable to rely either on their execution or on their non-execution;
such a possibility would be particularly undesirable if the arbitrarily high pro-
portion of untrusted participants in a transaction could deliberately lengthen
the time in which the transaction’s outcome is uncertain.

1.3.3 Speed, safety, and liveness

In order to mitigate the effects of computers unexpectedly failing or being
taken offline, some systems adopt decentralized consensus protocols that en-
sure (in all but the most dire circumstances) safety and liveness at the cost
of some speed. While circulex does not prevent participants from using de-
centralized consensus protocols for their own decision-making, it does not
require it, either.

Instead, circulex requires each participant to nominate a number of re-
lays (including, if desired, their primary instance) to which their neighbours
must send relevant complete agreements. (Note that although circulex re-
lays might often also act as libp2p circuit relays, the roles are distinct.) A
complete agreement is considered to have been received when more than half
of the relays have received it. This ensures safety, provided that less than
half of a participant’s relays (and less than half of the relays of each of its
neighbours) are offline or misbehaving during the time in which the outcome
of an attempted transaction is uncertain.

As for speed, a participant’s decision-making need not be encumbered by

7

ensuring consensus among their network of relays; when the primary instance
has received the relevant information from sufficiently many of its relays, it
can immediately act on that knowledge, without even having to inform its
relays of the outcome.

However, the liveness of a participant’s instance is more fragile; when a
participant’s primary instance is offline, that participant cannot take part in
any new transactions; but in a large, well-connected circulex network, the
temporary absence of a single participant will have negligible effect on the
liveness of the network as a whole.

One additional benefit of this system is that a participant’s relays need
not be trusted to the same extent as their primary instance is trusted; relays
need not know the cryptographic secrets that the primary instance requires
in order to create the messages it sends. However, relays must be trusted to
faithfully forward the messages they receive, to accurately report the times
at which they received them, and to maintain confidentiality regarding the
identities of the participant’s neighbours’ relays.

1.3.4 Pathfinding

In order to execute a circulex transaction, the would-be participants must
first find the path through their trust relationships along which the transac-
tion will flow. This is achieved in a decentralized way as part of the process
of constructing the complete agreement.

If someone receives a pathfinding request (in the form of a partial agree-
ment) from someone with whom they have a trust relationship, it will specify
the bilateral agreement that those two participants will execute if it is in-
cluded as part of the overall transaction.

With the details of that proposed bilateral agreement — including the
payment to be made to the paywise neighbour and the deadline for the
complete agreement to reach the talkwise neighbour —, the one receiving
the request can extend the partial agreement by choosing a potential neigh-
bour in the other direction and an appropriate payment and deadline, thus
constructing another bilateral agreement that might be part of the overall
transaction. In fact, they might construct several different such bilateral
agreements, and send them to several different potential neighbours, hoping
that one of their proposed bilateral agreements will be included in the overall
transaction.

It might be objected that there is potential for this pathfinding algorithm
to suffer from complexity that is exponential in the number of participants in
the final path. While this may be true, it is also true that the computational
power devoted to pathfinding can increase just as quickly; each potential par-

8

ticipant in the transaction needs only to consider and construct those parts
of pathfinding messages that affect themself and their potential neighbours.

The initial pathfinding request can be accompanied by hints for other po-
tential participants, specifying, for example, which currency the pathfinding
should aim for. This facility is intended to assist in increasing the speed and
reducing the complexity of pathfinding, as well as reducing the cost of the
final path.

Any hopeful participant who stands to gain from being part of the trans-
action (for example, from exchange rate spreads, or by charging their talkwise
neighbour fractionally more than they promise to pay their paywise neigh-
bour) has an incentive to help find (and therefore be part of) the cheapest
path. They might attempt to do so by, for example, keeping statistics on
which of their potential neighbours have most often been successful in com-
pleting transactions of different kinds.

1.3.5 Uniqueness and reversibility

During pathfinding for any given circular exchange, a participant might re-
ceive partial agreements from many potential neighbours in either the pay-
wise or the talkwise direction; they might choose a number of these partial
agreements and use each as the basis for one or more extended partial agree-
ments for each of several potential neighbours in the other direction. But
the participant might not have the confidence to commit to so many paywise
partial agreements unless they are assured that at most one of them will be
included in the final transaction; otherwise they might end up selling more
of one currency than they want to, for example.

To provide such assurance, the circulex protocol includes another deadline
in each bilateral agreement, besides the deadline for the paywise neighbour
to prove to the talkwise neighbour that the transaction is going ahead. This
second deadline, called the reversal deadline, is the deadline for the talkwise
neighbour to prove to the paywise neighbour that the transaction is being
reversed. If the paywise neighbour has proven that the transaction is being
executed, then the payment becomes irreversible after the reversal deadline
has passed, unless the talkwise neighbour has, by that time, proven that the
transaction is being reversed.

The form of this proof is simply proof that another path was also chosen
for the same transaction; therefore, if a participant discovers — after paying
one paywise neighbour for a particular transaction — that another paywise
neighbour is also expecting payment for the same transaction, then they can
use the complete agreement obtained from the first paywise neighbour to
prove to the second that another path was also chosen for the same trans-

9

action, thus nullifying their obligation to pay the second paywise neighbour;
the second paywise neighbour can then use the same complete agreement to
reverse their obligation to pay their own paywise neighbour, and so on. (If
the relevant reversal deadline has not passed, then the payment to the first
paywise neighbour can also be reversed, by sending to that paywise neighbour
the complete agreement obtained from the second paywise neighbour.)

In practice, it ought to be rare for two different complete agreements to
exist for the same transaction, with each specifying a nontrivial path (that
is, a path including participants other than the initiator of the transaction).
This is because there’s no useful reason for more than one such complete
agreement to be constructed. However, it’s important that this mechanism
exists, in order to give participants assurance that they need not be obliged
to pay more than one paywise neighbour once for each transaction.

Furthermore, the mechanism can also be used to construct transactions
that are — with the consent of every participant — deliberately reversible
(at the option of the initiator) for a significant length of time after they are
executed. In order to reverse such a transaction, the initiator can construct
a complete agreement in which they are the only participant, and send it
to their paywise neighbour (before their reversal deadline) as proof that the
transaction is being reversed.

The initiator might find it difficult (or even impossible) to find paths
whose participants are unanimously willing to agree to a long-term reversible
transaction, or they might find it more expensive to use such paths, but the
protocol allows them to try.

1.3.6 Privacy

Simply by being decentralized, circulex allows more privacy than a system
like Stellar that relies on a global public ledger of balances and trust rela-
tionships. However, a naive implementation of the solution described above
would still reveal a great deal of information to untrusted participants in
transactions (and even, during pathfinding, to hopeful participants and com-
puters set up to act as hopeful participants for the purpose of surveillance or
interference).

To enhance privacy, the circulex protocol is designed to prevent partici-
pants in a transaction from learning either the identity of participants (other
than those with whom they have a trust relationship) or the details of bilat-
eral agreements (other than their own).

In any particular transaction (or attempted transaction), each partici-
pant is publicly identified by a temporary public key that is, in general,
unique not only to that circular exchange, but also to each proposed bial-

10

teral agreement that that participant receives. This temporary public key
is generated by the neighbour who proposes the bilateral agreement; they
modify the participant’s medium-term public key using the details of the
proposed bilateral agreement, together with a shared secret obtained from
the two participants’ medium-term keys. Only the participant receiving the
proposal (whose medium-term public key was the basis for the temporary
one) is able to produce signatures that will pass verification with the tempo-
rary public key; and even if a participant’s medium-term public key is known
to adversaries, the connection between that public key and the temporary
one cannot be established.

This achieves several things: it ensures that when a participant needs
a new temporary public key for a potential neighbour, they require only
one-way communication to establish it; it prevents the accidental reuse of
temporary public keys; and it allows the temporary public key to uniquely
specify (only to the relevant participants) both the identity of its owner and
the details of the bilateral agreement.

2 Typical operation

Before going on to the fine details, it’s worth getting an overview of the typical
operation of the protocol — how people interact with circulex applications,
which messages the applications send, in what order, and what they mean.

In the circulex protocol, this can be roughly divided into three phases:
establishing relationships, pathfinding for a transaction, and executing the
transaction. It’s worth looking at each phase from two points of view: first,
the interactions involving people; and second, the messages that circulex
applications send each other.

2.1 Establishing relationships

2.1.1 Human interactions

When Alice first introduced Bob to circulex, she recommended an app, which
he downloaded to his phone. When Bob first opened the app, it asked him
whether he wanted it to keep his IP address private, noting the tradeoffs
involved. Because Bob lives in a country with a great degree of freedom of
association [40], he allowed the app to reveal his IP address freely. The app
also allowed Bob to set an approximate limit on the bandwidth he wanted
to let it use.

Alice got her computer to display her participant identity as a two-
dimensional barcode, which Bob scanned with his phone’s camera. The app

11

asked Bob how he wanted it to refer to the owner of the particpant identity,
and he typed “Alice”. Likewise, Bob got his app to display his participant
identity to Alice’s webcam, so that Alice’s circulex application knew Bob’s
identity.

Alice then told her application that she trusted Bob for up to 3000 nzd.
Bob’s app asked him if he was willing to accept this extension of credit,
prompting him to discuss with Alice such questions as:

� How will his debts to her be settled?

� How will they decide when to settle them?

� Who will cover any transaction costs incurred in settling them?

The circulex protocol doesn’t dictate the answers to these questions; instead,
it gives participants the flexibility to decide for themselves the most suitable
answers, taking into account their personal relationships and circumstances;
but it’s very important that both participants in a trust relationship have
the same understanding about the answers to those questions.

Bob accepted Alice’s extension of credit, and chose to extend the same
amount of credit to Alice.

Bob also exchanged participant identities with Carlos, but because they
were on different continents, they did so using their favourite secure mes-
saging app, instead of with two-dimensional barcodes. Because Bob mostly
owns and uses nzd, while Carlos mostly owns and uses usd, they agreed that
Carlos’s debts to Bob will be denominated in usd and Bob’s debts to Carlos
will be denominated in nzd. Bob chose to trust Carlos for up to 800 usd,
and Carlos chose to trust Bob for up to 1200 nzd.

2.1.2 Computer interactions

While the above was happening, the applications automatically sent a num-
ber of messages, establishing relationships among each other and their relays.

Alice’s participant identity included Alice’s IP address, and the port used
by circulex, but Bob was connecting to the internet via network address
translation, so his app didn’t yet know its own public IP address and port.
Bob’s app initiated a connection to Alice’s computer, which verified the au-
thenticity of the connection, thus learning Bob’s public IP address and port.
Alice’s and Bob’s applications used core libp2p protocols to enable Bob’s
app to learn its public IP address and port, and to confirm that incoming
connections to that address and port were possible.

Bob’s app then exchanged invitations with Alice’s and Carlos’s applica-
tions; these carried information about their current medium-term circulex

12

public keys, their requested bandwidth limits (if any), and their lists of cho-
sen relays. Bob’s app also exchanged statements with his peers’ applications;
these messages conveyed the credit limits set by their owners, and any other
requested limits on the sizes of transactions.

Because Bob had only just started using circulex, his app listed itself as
its only relay. At least three relays are required in order to participate in
transactions, so Alice’s computer sent a relay offer to Bob’s app, offering to
act as one of Bob’s relays for a certain length of time. Bob’s app assumed
that because Bob trusts Alice with a substantial sum of money, he also trusts
her computer to act as a relay, so it tested its latency to Alice’s computer by
sending pings and receiving pongs in response. It then added Alice’s com-
puter to its internal list of relays, in order to include it in future invitations.
Likewise, Carlos’s application also sent a relay offer to Bob’s app, which
was accepted. Bob’s app then sent new invitations, which included the new
relays, to his peers.

Bob’s app sent an indicative relay request to Alice’s and Carlos’s appli-
cations (in their roles as his relays); this requested information about the
communication latency from those relays to his peers’ relays (as listed in
those peers’ invitations). Bob’s relays (including Bob’s own app) sent in-
dicative relay peering messages to his peers’ relays, and received similar mes-
sages from them (perhaps as a result of indicative relay requests from Alice
and Carlos), signifying a willingness to allocate bandwidth to their roles as
peers’ relays. Bob’s relays then started to measure the latency to his peers’
relays by sending pings to them and receiving pongs in response. Alice’s and
Carlos’s applications then responded to the indicative relay requests by each
sending a latency report to Bob’s app.

These relationships are maintained by sending fresh invitations, state-
ments, relay offers, pings, pongs, indicative relay requests, indicative relay
peering messages, and latency reports, as necessary. Occasionally, if two
circulex instances that need to communicate are unable to do so, relay rejec-
tions might be required, which an instance can use to inform its peer that the
instance’s relays can’t reliably communicate with one or more of the peer’s
relays.

2.2 Pathfinding

2.2.1 Human interactions

Alice visits Frank’s website and orders a smartphone from him. His site is
set up to allow payment via circulex, so Alice chooses that option. The site
generates a link encoding a payment request, which Alice clicks, opening it

13

in her circulex application. The payment request is for 450,000 krw, and
includes a reference, which is used to associate the payment with Alice’s
order.

Alice’s application knows that she uses nzd, rather than krw, so it sug-
gests that Alice might be willing to pay up to 610 nzd in order to get the
450,000 krw to Frank. Alice checks the payment details and confirms her
willingness to pay that much. Then the application attempts to find a path
for the payment.

Separately, without any involvement from Alice or Frank, other people,
such as Bob and Denise, have already told their circulex applications that
they’re willing to exchange certain currencies at certain rates. For example:
Bob — who Carlos already owes 500 usd from a previous transaction — is
willing to exchange part or all of that debt for nzd at a rate of 3 nzd for
every 2 usd; Denise wants to buy up to 1000 usd at a rate of 1 usd for every
1125 krw.

2.2.2 Computer interactions

Transaction identifier When Alice confirms her willingness to make the
transaction, her application first creates a transaction identifier to uniquely
identify the transaction. The transaction identifier includes the completion
and finality deadlines for the transaction. The completion deadline is the
time at which the application wants to make a final choice of the path for
the transaction; the finality deadline puts a limit on how long the transaction
will be reversible for.

Alice’s application chooses these deadlines sufficiently far in the future
to allow a reasonable length of time for pathfinding, but not so far in the
future that Alice will get frustrated waiting for confirmation that her payment
has gone through, or so far in the future that potential participants will be
reluctant to set aside funds for long enough to participate in the transaction.

Hints Alice’s application then creates two hints : a talkwise hint to send to
Frank’s circulex instance (her intended talkwise partner in the transaction),
and a paywise hint to send to her potential paywise neighbours.

The talkwise hint indicates that the payment is expected to be made via
nzd and the expected value of the payment is approximately 605 nzd (the
application’s estimate of the actual value in nzd). This allows Frank’s in-
stance, as well as any others who receive the hint, to focus on looking for
paths through potential talkwise neighbours that have successfully partici-
pated in similar nzd transactions in the past. It also allows them to rule

14

out potential neighbours whose credit limits would prevent them from par-
ticipating in a transaction of that magnitude.

Frank’s instance forwards the talkwise hint to instances that it’s willing
to consider as potential talkwise neighbours in the transaction; each other
recipient of the talkwise hint does likewise, if they’re willing to participate
in the transaction themselves.

The paywise hint specifies that the payment is expected to be received via
krw and to have a value of 450,000 krw; this hint performs a pathfinding
function similar to that of the talkwise hint, but in the other direction.

Transaction relay requests and related messages As soon as an in-
stance that’s willing to participate receives a hint for Alice’s transaction, it
can send transaction relay requests to its relays. A transaction relay request
asks the recipient to act as the sender’s relay for a specific transaction, re-
laying to specified destinations the complete agreements the relay receives
between the completion and finality deadlines, and reporting on how many
distinct such complete agreements it received.

For example, when Bob’s app recieves a hint from Alice’s application, it
sends a transaction relay request to Alice’s and Carlos’s instances (in their
roles as Bob’s relays), asking them to act as relays for this transaction, and
specifying Alice’s and Carlos’s relays as the destinations to forward complete
agreements to.

Carlos’s instance sends transaction relay peering messages to each of Al-
ice’s relays, which send similar messages back (perhaps in response to trans-
action relay requests from Alice’s application). These messages indicate will-
ingness to receive complete agreements for the transaction.

Carlos’s instance then uses fresh pings, if necessary, to update its informa-
tion about the communication latencies to its own and Alice’s relays. Then
it responds to Bob’s transaction relay request with a latency report. This
response indicates its agreement to act as Bob’s relay for this transaction,
and provides Bob’s app with the latency information it will need.

Alice’s application sends and receives similar messages, in its role as Bob’s
other relay.

Partial agreements Finally, Alice’s application generates some partial
agreements, which each begin a chain of firm commitments that, if they
come back to Alice, could be chosen as the path for the transaction. Alice’s
application generates one partial agreement to send talkwise to Frank, and
another for each of her potential paywise partners.

The most informative part of a partial agreement is the bilateral agreement

15

that it contains. The bilateral agreement specifies the payment to be made,
and also includes a deadline and a reversal deadline.

Alice’s talkwise partial agreement specifies that Frank’s “payment” to
Alice will be an acknowledgement that he’s received 450,000 krw in payment
for her order. If, before the deadline, Alice’s relays prove to Frank’s that a
path built using that partial agreement was chosen, then Frank will be obliged
to acknowledge receipt of that payment. However, if, before the reversal
deadline, Frank’s relays prove to Alice’s that another path was chosen, then
his obligation will be nullified.

Because Alice’s application will itself be choosing the final path at the
completion deadline, it chooses the deadline in this partial agreement to
allow enough time for the proof to traverse the slowest path from Alice’s
application, via one of her relays, to one of Frank’s relays, thus ensuring that
every one of Frank’s relays will receive the proof from every one of Alice’s
relays before the deadline, unless unexpected network problems occur; even
in such a case, multiple problems would need to occur in order for Alice’s
application to believe that it had supplied the proof on time, and Frank’s
instance to believe that it hadn’t.

Frank’s instance then uses the partial agreement it receives from Alice
to construct another partial agreement for each of his potential talkwise
partners, including Edith. The partial agreement to send to Edith specifies
a payment to Frank of 450,000 krw. It also includes a deadline sufficiently
later than the deadline in the partial agreement from Alice that any one of
Frank’s relays can forward a proof to every one of Edith’s relays before the
later deadline, as long as it receives it before the earlier deadline. Similarly,
Frank’s instance chooses a reversal deadline early enough that if, before that
reversal deadline, any one of his relays receives proof that another path was
chosen, then it can forward it to every one of Alice’s relays before the reversal
deadline specified in the partial agreement Frank’s instance received from
Alice’s application.

In successive talkwise partial agreements like these, deadlines become
later and reversal deadlines become earlier. Reversal deadlines always have
to be later than deadlines, but earlier than the finality deadline. Therefore,
Alice’s application chose the reversal deadline to be equal to the finality dead-
line, and both to be sufficiently later than the completion deadline to allow
paths of moderate latency. However, a reversal or finality deadline too far
in the future would risk discouraging participation by instances that dislike
lengthy uncertainty about whether or not a transaction will be reversed.

At the same time, paywise partial agreements for the same transaction
are also circulating. Alice’s application sends one to each of the instances it’s
willing to consider as paywise neighbours for this transaction, including Bob.

16

The partial agreement sent to Bob’s app specifies a payment of 605 nzd and
a deadline and a reversal deadline about half way between the transaction’s
completion and finality deadlines.

Bob’s app then builds on this partial agreement to create a partial agree-
ment to send to Carlos’s instance. This partial agreement specifies that Bob
will forgive 403.34 usd of Carlos’s debt. It has a deadline shortly before, and
a reversal deadline shortly after, the corresponding deadlines in the bilateral
agreement with Alice; this allows enough time for the relevant proofs, if re-
ceived on time by at least one of Bob’s relays, to be forwarded on time to all
of Alice’s or Carlos’s relays, respectively.

Carlos’s instance then builds on this partial agreement to construct partial
agreements for each of his potential paywise neighbours, and so on.

Denise’s instance receives two talkwise partial agreements for this trans-
action, but at first it doesn’t consider Carlos as a very likely talkwise partner
for the transaction, so it doesn’t send a partial agreement to his instance.
However, when it receives a paywise partial agreement from Carlos’s instance,
it knows that there’s a paywise chain of willing participants from the transac-
tion’s initiator (who’s anonymous to Denise) to Carlos, so it sends a talkwise
partial agreement to Carlos’s instance. It bases this on the partial agreement
it received from Edith, because the other one it received specifies a larger
payment for Denise to make.

It also uses the partial agreement it received from Carlos to create a
paywise partial agreement to send to Edith.

2.3 Execution

2.3.1 Human interactions

No further human intervention is required to execute the transaction.
Once it’s been executed, Alice’s application notifies her that the payment

has been made, and that it cost her only 600 nzd — a little less than the
maximum she’d authorized. Frank’s website marks Alice’s order as paid,
initiating the process to deliver the smartphone to her.

Other participants in the transaction’s chosen path aren’t notified about
that transaction specifically, but next time they look, they’ll see a change
in their balances of obligations to and from their neighbours; their total
net balances of obligations won’t have changed, except for participants who
explicity chose to allow their total balances to change (for example, by trading
currencies, like Bob and Denise, or by forgiving doubtful debts at a discount,
which no-one in this example did).

Potential participants who weren’t included in the chosen path remain

17

completely oblivious to the transaction’s existence, unless they inspect their
instance’s logs, and even in that case, they can’t tell whether the transaction
was successful, or whether its initiator simply committed to the transaction’s
non-execution.

2.3.2 Computer interactions

By the completion deadline, Alice’s application has received a number of par-
tial agreements from her potential neighbours in the transaction. For exam-
ple, it received a paywise partial agreement from Frank’s instance, specifying
that Alice would pay her paywise neighbour 605 nzd, and a talkwise partial
agreement from Bob’s app, specifying that she would pay Bob 600 nzd.

The partial agreement from Bob’s app specifies the smallest payment
for Alice to make, so her application uses that one to construct a complete
agreement. It sends the complete agreement to each of Alice’s relays, which
forward it to the relays of all of Alice’s potential neighbours, which in turn
forward it to the relays of all of the potential neighbours of those potential
neighbours, and so on.

For example, Alice’s application, acting as one of its own relays, forwards
the complete agreement to (among others) Bob’s and Carlos’s instances, in
their roles as Bob’s relays; in its role as another of Bob’s relays, it forwards
the complete agreement to all of Carlos’s relays. For another example, Bob’s
app, as one of its own relays, forwards the complete agreement to all of Alice’s
and Carlos’s relays.

In this way, the relays of all of the potential participants receive a copy of
the complete agreement. There’s a significant level of redundancy involved
in this process, to ensure that only widespread message loss or delay can
prevent the majority of any potential participant’s relays from receiving the
complete agreement in a timely way.

When each relay first receives the complete agreement, it sends to its
primary instance (the instance for which it’s acting as a relay) a receipt. The
receipt contains a copy of the complete agreement and notes the time at
which the relay first received it.

For example, Bob’s app receives receipts from Alice’s and Carlos’s in-
stances. These allow it to conclude that the bilateral agreements with Alice
and Carlos have been triggered by the timely receipt of a relevant complete
agreement; however, as far as Bob’s app is aware, there’s still, at this point,
the possibility that the obligations arising from those bilateral agreements
will be nullified by the timely receipt of a different complete agreement for
the same transaction.

When sufficiently many receipts reach a potential participant not included

18

on the chosen path, it can immediately rely on the fact that it hasn’t been
included.

At the finality deadline, each relay sends to its primary instance a tally
indicating the number of distinct complete agreements it received for this
transaction — in this case 1 (or 0, for any relay that lost its network connec-
tion at the crucial moment).

When Bob’s app receives tallies from Alice’s and Carlos’s instances, it can
conclude that no second complete agreement reversed the effect of the first,
and that therefore Alice now owes Bob 600 nzd more, and Carlos owes Bob
400 usd less. These balance changes (and an indication of which transaction
caused them) are reflected in the next statements Bob’s app sends to Alice’s
and Carlos’s instances; when Bob’s app receives corresponding statements
from Alice’s and Carlos’s instances, it can verify that there’s no disagreement
between Bob and his peers about what their balances are or which transaction
caused the changes.

2.4 Missing messages

Certain messages that contain important information — such as statements
— are usually sent only once each, without the redundancy associated with
complete agreements. If such a message fails to reach its destination, the
intended recipient can, when it realizes that one or more messages have gone
missing, send amissing information request, which requests that the messages
be resent.

For example, Bob’s app receives a statement from Carlos’s instance cov-
ering a period after Alice’s payment to Frank, but it hasn’t yet received a
statement that includes that transaction. Without any human intervention,
Bob’s app sends a missing information request to Carlos’s instance request-
ing statements covering the relevant period; Carlos’s instance responds by
resending the statement that Bob’s app hadn’t received.

3 Prerequisites and other standards

3.1 BCP 14

The key words “must”, “must not”, “required”, “shall”, “shall not”,
“should”, “should not”, “recommended”, “not recommended”, “may”,
and “optional” in this document are to be interpreted as described in BCP
14 [6] [5] [15] when, and only when, they appear in all capitals, as shown here.

19

3.2 ASN.1

The specification of circulex is given below using Abstract Syntax Notation
One (ASN.1) [41], including the use of information objects [42] and con-
straints [43]. Except where otherwise specified, the Canonical Octet Encod-
ing Rules (COER) [44] are used.

The ASN.1 module specifying circulex begins as follows:

Circulex

DEFINITIONS

AUTOMATIC TAGS ::=

BEGIN

IMPORTS Nanosecond FROM TAI64N;

-- Generally useful things

LimitedString ::= OCTET STRING (SIZE (0 .. 255))

NonnegativeInteger ::= INTEGER (0 .. MAX)

PositiveInteger ::= INTEGER (1 .. MAX)

TimeLabel ::= Nanosecond

The TAI64N module is defined in Section 3.3; the remaining ASN.1 frag-
ments in this document are from the rest of the Circulex module.

Each LimitedString must contain the BOCU-1 encoding (without reset
bytes) of a Unicode string [34].

Most enumerated and choice types in the ASN.1 specification of circulex
use the identifier experimental to reserve room for experimenting with pos-
sible extensions to the protocol before standardizing them, if the experiment
is successful (see Internet Best Current Practice 82 [27]). The recipient of a
message that uses this facility must not rely on any interpretation of the
experimental part of the message unless it has confirmed that the creator
of that part of the message intended that interpretation. However, other
parts of the message might still be useful to the recipient. For example,
the recipient of a hint can still obtain useful information from other parts
of the hint even if its target currency is experimental, and the recipient has
no knowledge of the experiment; if the recipient wishes to take part in that
transaction, it is also still useful to forward the hint to potential neighbours
in the transaction.

Data associated with an experimental alternative is always in the follow-
ing form:

20

Experimental ::= SEQUENCE {

code OCTET STRING (SIZE (6)),

name LimitedString,

data OCTET STRING

}

The elements have the following meanings:

code

A six-byte code generated for the experiment randomly or pseudoran-
domly (from a uniform distribution over all possible six-byte codes). If
the experiment changes in a way that breaks compatibility with earlier
versions of the experiment, a new six-byte code must be generated for
the newly-altered experiment.

name

A short name for the experiment, which should not be empty. In-
compatible iterations of an evolving experiment can use the same name.

data

Any data required by the experiment in the relevant context. For
example, the data might be the parameters (if any) of an experimental
signature scheme.

3.3 Timekeeping

Instances must keep their clocks accurate, so that they share with their
peers a common understanding of the deadlines specified in the messages
they exchange. It is recommended that instances use a standard protocol
like NTP [21] for this purpose.

Because many systems handle leap seconds poorly, instances should
be aware of leap seconds and, when in their proximity, act on conservative
assumptions about the accuracy of their own and their peers’ clocks.

Circulex uses TAI64N labels [3] as time labels. The ASN.1 specification
of TAI64N labels is:

TAI64N

DEFINITIONS

AUTOMATIC TAGS ::=

BEGIN

21

Second ::= INTEGER (0 .. 9223372036854775807)

Nanosecond ::= SEQUENCE {

second Second,

nanosecond INTEGER (0 .. 999999999)

}

END

Note that the COER encoding of a Second or Nanosecond is identical to the
external TAI64 or TAI64N format encoding of the same TAI64 or TAI64N
label, respectively.

3.4 Hashes

A HashAlgorithm specifies an algorithm to be used for hashing, as well as
the length of its output to be used.

-- Hashes

HashAlgorithm ::= SEQUENCE {

algorithm OCTET STRING,

outputLength PositiveInteger

}

Its elements have these meanings:

algorithm

The code of the hash algorithm, as defined by the canonical multicodec
table [24].

outputLength

The number of bytes of its output to be used. If the algorithm lacks
a canonical output length, or this number differs from the canonical
length, then a prefix of the output is to be used, its length being the
number of bytes specified here.

Hash ::= SEQUENCE {

algorithm OCTET STRING,

body OCTET STRING

}

22

The elements of a Hash are:

algorithm

The canonical multicodec code of the algorithm used to generate this
hash.

body

The value of the hash itself.

Note that the multiformats unsigned-varint encoding [38] (as used by
multihashes [25]) is not used here; COER has its own way of encoding the
lengths of octet strings and integers, and there is no need to duplicate that
information.

In this version of circulex, implementations must support SHAKE256 [7]
with 512 bits (64 bytes) of output.

3.5 Signature scheme

Although circulex allows future flexibility in the choice of signature scheme,
only one signature scheme is specified for use in this version of circulex; it’s
inspired by EdDSA for more curves [4], but uses ristretto255 [39] as the
underlying group.

Let ℓ = 2252 + 27742317777372353535851937790883648493, the order of
the ristretto255 group; let B denote its standard basepoint. The canonical
encoding of an element A of the group is denoted A. A scalar S for the
group is an integer modulo ℓ, and is encoded as S using the usual 256-bit
little-endian encoding of {0, 1, . . . , ℓ− 1}.

LetH denote SHAKE256 with 512 bits of output [7]; when its output is to
be used as an integer, it is to be interpreted as the little-endian encoding of an
integer in {0, 1, . . . , 2512−1}. For integers i and j such that 0 ≤ i < j ≤ 512,
let hi(x) denote bit i of the output of H(x) (the first bit being counted as bit
0) and hi,j(x) denote the part of the output of H(x) from bit i to bit j − 1,
inclusive, so that h0,512(x) = H(x), hi,i+1(x) = hi(x), and hi,j(x)∥hj,k(x) =
hi,k(x) for 0 ≤ i < j < k ≤ 512. Let s(x) = 2251 +

∑
0≤i<251 2

ihi(x), so that
s(x) is a nonzero scalar.

When an instance wants to generate a public key for itself (either a
medium-term one or a temporary one), it generates a new secret key k and
calculates its corresponding public key A = s(k)B. Along with k, the scalar
s(k) must be kept secret. When the instance generates k, it must choose it
randomly (or pseudo-randomly) using a uniform distribution over a set of at
least 2256 options. Choices of different secret keys must be probabilistically

23

independent of each other. An instance should not reuse a public key
when it’s unnecessary to do so.

An instance can also, whenever it wants to, generate a public key for one
of its peers, such that only that peer is able to create signatures that are
valid under that public key. For this purpose, each instance is required to
have — for each peer it is willing to have as a neighbour in a transaction
— a medium-term secret key; the corresponding public key must be known
to the relevant peer. It is recommended that these medium-term keys are
regularly changed, to minimize the impact of any unwitting disclosure of the
secret keys.

Suppose instance 0 has medium-term key pair
(
A0, k0

)
, and instance 1

has medium-term key pair
(
A1, k1

)
; each instance’s medium-term public key

is known to the other instance. Each instance must verify that the other’s
public key is not 0. Instance i calculates a group element Ai,1−i as fol-
lows: Ai,1−i = s(ki)A1−i. It follows that A1,0 = A0,1 because s(k1)A0 =
s(k1)s(k0)B = s(k0)s(k1)B = s(k0)A1; this is a shared secret group element
for instances 0 and 1, and they must keep it secret.

Suppose instance 1 wishes to provide instance 0 with a temporary public
key T in a way that enables instance 0 (and only instance 0) to construct
signatures that pass verification under T . Instance 1 generates some data

x and sends it to instance 0. Each instance calculates T = s
(
A0,1

∥∥∥x)A0;

only instance 0 knows a discrete logarithm of T base B, specifically t =

s
(
A0,1

∥∥∥x) s(k0), which must be kept secret.

Given a message M on which instance 0 wishes to construct a signature
that passes verification under the public key T , it calculates r = H(h256,512(k0)∥x∥M).
(Notice the inclusion of x in the input of H; without it, instance 1 might
be able to induce instance 0 to sign the same message multiple times with
the same value of r, but with different values of t, leading to the discov-
ery of s(k0) by instance 1.) Instance 0 then calculates R = rB and S =
(r +H (R∥T∥M) t) mod ℓ and outputs the signature (R∥S).

If an instance with key pair (A, k) wishes to construct a signature that
passes verification under A (rather than under a public key generated for
it by a peer), it proceeds as in the previous paragraph, but with T = A,
t = s(k), and x being empty, so that r = H(h256,512(k)∥M).

When an instance wishes to verify that a purported signature (R, S) on a
message M is valid under a public key T , it parses R and T as group elements
R and T , respecively, and S as a scalar S. It then checks that 0 ≤ S < ℓ
and SB = R +H (R∥T∥M)T . If the inequalities and the equality all hold,
the signature is valid; otherwise it is invalid.

The warnings in EdDSA for more curves ([4], page 3) regarding different

24

choices of r should be heeded; implementers should not succumb to the
temptation to create signatures using other choices of r, which may be acci-
dentally repeated or too easily guessable, leading to an attacker discovering
the signer’s secret scalar and forging signatures.

The ASN.1 definitions for signature schemes generally are:

-- Signatures

SignatureScheme ::= CHOICE {

experimental Experimental,

ristretto255-shake256 NULL,

...

}

Signature schemes must ensure that concatenated encoded keys can be
uniquely parsed, thus recovering the original sequence of keys, and that con-
catenated signatures can likewise be uniquely parsed, recovering the original
sequence of signatures. The signature scheme specified above achieves this
by encoding keys and signatures as fixed-length sequences of bytes.

PublicKey ::= SEQUENCE {

scheme SignatureScheme,

key OCTET STRING

}

The elements of a PublicKey are:

scheme

The signature scheme to be used with this public key.

key The public key itself.

The message M for which a signature is created must be the COER
encoding of a Signable object.

Signable ::= CHOICE {

experimental Experimental,

hintBody HintBody,

paymentPath SignablePath,

completeAgreement SignablePath,

...

}

25

See below for the definitions of HintBody and SignablePath, as well as
further conditions restricting the circumstances under which signatures may
be created.

3.6 Communication with peers

Instances must be able to maintain secure, authenticated, timely communi-
cation with their peers. In order to achieve this, it is recommended that
instances communicate using libp2p [16] over QUIC [11]. The libp2p protocol
id [26] for circulex is /circulex/ followed by the protocol version number,
which is compliant with Semantic Versioning 2.0.0 [30]. The version number
for this version of the circulex protocol is 1.0.0-1674690536.

-- Identifying and commmunicating with other participants

PeerID ::= OCTET STRING

MultiAddress ::= OCTET STRING

A PeerID is a libp2p peer ID [10], and a MultiAddress is a multiformats
multiaddr [22]. In both cases, the binary encoding is used, rather than the
string encoding.

Because the timely delivery of complete agreements is particularly impor-
tant, instances should not send them over the same streams as messages
whose punctuality is not so crucial; this policy can help avoid unnecessary
delays due to head-of-line blocking in cases where parts of earlier, less im-
portant, messages have been lost and need to be resent.

Instances must also employ a number of relays and should take into
account the number of relays a peer is using when deciding whether to make
new bilateral agreements with that peer. Instances must keep their peers
informed of changes to the set of their own currently live relays.

4 Definitions

4.1 Identity

An identity is used to specify a participant in circulex. It contains sufficient
information to encrypt and authenticate connections to that participant, as-
suming a means of communicating with them has been established. This
version of circulex has just one non-experimental alternative for identities —
a libp2p peer ID.

26

Identity ::= CHOICE {

experimental Experimental,

libp2p PeerID,

...

}

4.2 Contact details

A contact details object is used to specify how instances can, for the time be-
ing, connect to a particular instance. Note that this information can change
over time — for example, if the instance has a dynamic IP address and no
domain name.

ContactDetails ::= SEQUENCE {

identity Identity,

addresses SEQUENCE OF MultiAddress

}

Where the identity is a libp2p peer ID, any MultiAddress listed in
addresses must not end with the binary encoding of /p2p/bafz..., where
bafz... represents the peer ID specified in identity; repetition of this
information would be wasteful.

4.3 Currency

A currency is specified as follows:

-- Requesting payment (out-of-band)

Currency ::= CHOICE {

experimental Experimental,

standard IA5String

(SIZE (3) ^ FROM ("A".."Z")),

userDefined LimitedString,

...

}

The non-experimental alternatives have the following meanings:

standard

The standard capitalized code representing the currency [35].

27

userDefined

This alternative allows for the use on circulex of arbitrary obligations.
Participants who make use of this feature to record obligations between
each other must share a mutual understanding of the meaning of the
obligations. Circulex implementations need not understand the mean-
ings of user-defined obligations; however, they must ensure that the
participants confirm that they have the required mutual understanding.

4.4 Amount

An amount specifies a certain quantity of a certain currency.

Amount ::= SEQUENCE {

currency Currency,

numerator INTEGER,

denominator PositiveInteger

}

The currency element specifies the currency, while the numerator and
denominator elements encode the numerator and denominator, respectively,
of a fraction specifying the quantity of the currency.

4.5 Target

A target can contain information that might assist instances’ pathfinding
attempts for an intended transaction.

Target ::= SEQUENCE {

currency Currency OPTIONAL,

payload Amount OPTIONAL

}

Its elements have the following meanings:

currency

A currency intended to be used in the transaction.

payload

The approximate value intended to be transferred by each participant
in the transaction. The currency specified in the payload should be
one that will be widely understood, and can be the same as or different
from the target’s own currency (if present).

28

4.6 Reference header

A reference header is used to specify the interpretation of reference data to
be included in a payment specification. Typically, the meaning of the header
only needs to be understood by the payee’s instance; the payer’s instance
will receive the header in a payment request and include it unaltered in a
payment specification.

The ASN.1 definition of a reference header is:

ReferenceHeader ::= SEQUENCE {

scheme LimitedString,

fixedField LimitedString

}

The elements have the following meanings:

scheme

A string identifying the reference scheme used by the payee for this
payment. The payee doesn’t need to ensure that no other payees are
using the same string to identify a different scheme, but should not
use the same string to identify different schemes in use by itself.

fixedField

A fixed string to be included by the payer in a payment specification in
a partial agreement sent to the payee. The payee can use this field for
the payer’s account number, or a code identifying a particular purchase,
for example, but may leave it empty. The value of the scheme element
must be sufficient to allow the payee to correctly interpret this field
when it’s included in a partial agreement sent to the payee.

4.7 Payment request

A payment request can be used to specify a request for a payment to be made
via circulex.

PaymentRequest ::= SEQUENCE {

payee ContactDetails,

amount Amount,

paywiseTarget Target,

referenceHeader ReferenceHeader,

prompts SEQUENCE OF LimitedString

}

29

Its elements have the following meanings:

payee

The circulex participant to be paid, according to the request.

amount

The currency and amount requested to be paid.

paywiseTarget

The target requested to be used in paywise pathfinding for the trans-
action.

referenceHeader

A reference header to be used verbatim as the header of the reference
element of a payment specification that is to be included in a partial
agreement between the payer (as the payee’s paywise neighbour) and
the payee, if the payment is to be made.

prompts

A sequence of strings to be presented to the payer (if they are willing
to make the payment). The payer’s responses to those prompts are to
be included (in the same order) in the answers element of the reference
included in the partial agreement they send to the payee; the answers
element must be a sequence of the same length as the prompts element
of this reference template, even if some or all of the payer’s responses
are empty.

4.8 URI scheme

Some circulex-related information, such as that required to authenticate a
participant, is transmitted out of band using Uniform Resource Identifiers
[2].

A circulex URI begins with the string “circulex:”, which is followed
by a case-sensitve string identifying the type of data contained in the URI,
then an exclamation mark (“!”), and finally a multibase encoding [23] of
the COER encoding of the relevant data. Notice that the only delimiters
used in a circulex URI are the single colon after the URI scheme name and
the single exclamation mark after the data type indicator. In particular, the
base chosen for the multibase encodings must not use an alphabet with any
characters outside the set of unreserved characters for URIs.

This version of circulex defines three data type indicators, with their
associated data types, as follows:

30

x An object of the Experimental type, whose use and interpretation is
defined by the experiment.

c A contact details object, which can be used by a participant to give
their potential peers the necessary information to make and authen-
ticate a connection. This deliberately excludes any claim about the
external identity of the owner of the contact details, so that an appli-
cation processing such a URI needs to prompt its user for that informa-
tion; this prevents scammers from producing circulex:c!... URIs
that contain their own cryptographic identities, but claim to belong to
a popular charity, for example, which might be relied on by a poorly
designed circulex implementation.

p A payment request. Again, and for the same reason, this deliberately
excludes claims about the external identity of the participant requesting
the payment.

There are two recommended forms of circulex URIs. The first is in-
tended for use in text-based communications; this form uses unpadded base64url
[13] in the URI, which is then encoded in UTF-8 [45]; readers should silently
ignore any whitespace characters in such URIs that are presented to them.
The second form uses the airtameg encoding [18] in the URI, which is then
encoded via UTF-8 into an Aztec Code [17].

4.9 Path types

As it does with signature schemes, circulex allows future flexibility in the
types of payment paths that are used, but defines only one path type for this
version of circulex, the simple path.

-- Path types

SimplePath ::= SEQUENCE {

talkwise BOOLEAN,

keys OCTET STRING

}

talkwise

If TRUE, then the keys in this path are listed in talkwise order, each key
being the talkwise neighbour of the previous one; otherwise the keys
are listed in the opposite—paywise—order.

31

keys

The concatenation of the keys of the participants (or potential partici-
pants) in a transaction. The signature scheme and transaction to which
the keys belong is determined by the context in which this simple path
is included.

For path types generally, we have the following specifications:

PathType ::= ENUMERATED {

experimental,

simple,

...

}

PATHTYPES ::= CLASS {

&pathType PathType UNIQUE,

&UnsignedPath

} WITH SYNTAX {&pathType, &UnsignedPath}

PathTypes PATHTYPES ::= {

{experimental, Experimental} |

{simple, SimplePath },

...

}

4.10 Transaction identifier

A transaction identifier is used not only to uniquely identify a particular
transaction, but also to specify the path type for the transaction.

TransactionIdentifier ::= SEQUENCE {

completionDeadline TimeLabel,

finalityDeadline TimeLabel,

pathType PathType,

initiatorPublicKey PublicKey

}

The elements have the following meanings:

completionDeadline

The completion deadline of the transaction — that is, the time at which

32

the initiator wishes to construct a complete agreement for this transac-
tion. An instance that might have already received a complete agree-
ment for a transaction after its completion deadline must not make
any new commitments regarding that transaction that it consequently
might not be able to keep. An easy way to satisfy this prohibition is
simply to refrain from sending any partial agreements or latency reports
for a transaction after its completion deadline.

finalityDeadline

The finality deadline of the transaction — the time by which the dispo-
sition of the transaction will be finalized. Reversal deadlines in partial
agreements for this transaction must not be later than the finality
deadline.

pathType

The path type to be used in this transaction.

initiatorPublicKey

A temporary public key belonging to the initiator of the transaction.
Instances should not use the same public key for more than one
transaction.

Partial agreements and complete agreements are considered to belong to
the same transaction if and only if they have identical transaction identifiers.

4.11 Signed payment path

A signable path identifies a specific path for a specific transaction.

SignablePath ::= SEQUENCE {

transaction TransactionIdentifier,

path PATHTYPES.&UnsignedPath ({PathTypes})

}

The path member of a signable path must be of the &UnsignedPath type as-
sociated (in the PathTypes table) with the pathTypemember of the transaction
member of the same signable path.

In the case of simple paths, the keys listed in the path must be public keys
belonging to the same signature scheme as is specified for the initiatorPublicKey
in the transaction identifier.

A signed payment path consists of a signable path together with signatures
indicating the conditional agreement (to participate in the transaction) of the
participants listed in the signable path.

33

SignedPath ::= SEQUENCE {

signablePath SignablePath,

signatures OCTET STRING

}

In the case of simple paths, the signatures member must be the con-
catenation of m signatures, where m is the number of keys in the keys

member of the path member of the signablePath member of the signed
payment path. Signature number j (where 1 ≤ j ≤ m) must be valid under
key number j − 1 (where key number 0 is the initiator public key), accord-
ing to the signature scheme specified for the initiator public key. It must
be a valid signature of the COER encoding of a Signable object using the
paymentPath alternative, where the SignablePath has the same transaction
identifier as that in the signed payment path, and where the SignablePath

being signed contains the same keys in the same order as the signablePath
member of the signed payment path, but excludes all of the keys after key
number j.

Definitions of other path types must specify requirements for the contents
of the signatures member of signed payment paths. These rules must be
sufficient to establish and verify the agreement of all participants whose keys
are listed in a valid complete agreement for a transaction that uses that path
type.

It’s recommended that the signatures are required to be listed in the
signed payment path in the same order as the keys under which they’re valid
are listed in the signable path. It’s also recommended that a canonical
subpath (also of the type SignablePath) is defined, containing all of the
predecessors and immediate successors of a public key listed in the path;
the signatures member of a signed payment path should be the con-
catenation of signatures (valid under the signature scheme specified in the
initiatorPublicKey in the transaction identifier of the path) of Signable
objects using the paymentPath alternative, where the SignablePaths are
canonical subpaths, as defined in accordance with this paragraph’s recom-
mendations.

Signatures of Signable objects using the paymentPath alternative must
not be created except in accordance with the requirements specified in Sec-
tion 5.11.3.

34

5 Messages

There are many different types of circulex message, and the details of each
non-experimental message type are explained in the following subsections.

-- Messages

MessageType ::= ENUMERATED {

experimental,

invitation,

statement,

relayOffer,

ping,

pong,

relayRequest,

relayPeering,

latencyReport,

relayRejection,

hint,

partialAgreement,

completeAgreement,

receipt,

tally,

missingInformation,

freeze,

...

}

SENDABLE ::= CLASS {

&type MessageType UNIQUE,

&BodyType

} WITH SYNTAX {

&type,

&BodyType

}

Sendable SENDABLE ::= {

{experimental, Experimental } |

{invitation, Invitation } |

{statement, Statement } |

{relayOffer, RelayOffer } |

{ping, Ping } |

35

{pong, Pong } |

{relayRequest, RelayRequest } |

{relayPeering, RelayRequestContext } |

{latencyReport, LatencyReport } |

{relayRejection, SEQUENCE OF Identity } |

{hint, Hint } |

{partialAgreement, PartialAgreement } |

{receipt, Receipt } |

{tally, Tally } |

{missingInformation, MissingInformation } |

{freeze, TimeLabel },

...

}

Message ::= SEQUENCE {

quoted BOOLEAN,

type SENDABLE.&type ({Sendable}),

body SENDABLE.&BodyType ({Sendable}{@type})

}

The members of a message have the following meanings:

quoted

This flag must be set if, and only if, the purpose of this message is
to send back to its original sender the contents of a message that was
originally sent in the opposite direction to this one. This will typically
be in response to certain kinds of missing information request.

type

The type of this message.

body

The body of the message.

5.1 Invitation

5.1.1 Bandwidth limit

When included in a message sent between circulex peers, a bandwidth limit
conveys the sender’s desired upper limit on the bandwidth used by a certain
class of circulex messages; the particular class that it relates to is determined
by context. The limit excludes the overheads associated with the relevant
transport and encryption protocols.

36

-- Invitation

BandwidthLimit ::= SEQUENCE {

bytes NonnegativeInteger,

seconds PositiveInteger

}

The members of a bandwidth limit have the following meanings:

bytes

The desired maximum number of bytes used by the relevant class of
messages over each period of the specified duration of time.

seconds

A number of seconds, specifying the duration relevant to this band-
width limit.

The recipient of a bandwidth limit isn’t obliged to make precise calcula-
tions of the bandwidth used by the relevant class of messages; an estimate is
sufficient. If the estimates are significantly in error, the sender of the band-
width limit can compensate by specifying an adjusted bandwidth limit in
future messages.

Bandwidth limits are specified in sequences, allowing messages to specify
multiple concurrent limits, each relating to a different duration. For example,
a message might specify a limit of 60 MiB per day, with bursts not exceeding
400 kb/s, using the following sequence of bandwidth limits:

01 02 2 bandwidth limits:
First bandwidth limit:

04 03c00000 60 MiB in each period of
03 015180 86,400 seconds;

Second bandwidth limit:
02 c350 50,000 bytes in each
01 01 1 second.

A sequence of bandwidth limits should not include multiple limits spec-
ifying the same duration. In a sequence of bandwidth limits, limits specifying
longer durations should imply lower average bandwidth usage than limits
in the same sequence that specify shorter durations.

37

5.1.2 Invitation

An invitation is a message that can be used by an instance to inform a peer
of its currently preferred hash algorithms, path types, medium-term public
keys, bandwidth limits, aliases, and relays.

Invitation ::= SEQUENCE {

hashAlgorithms SEQUENCE OF HashAlgorithm,

pathTypes

SEQUENCE OF SEQUENCE {

pathType PathType,

mediumTermKey PublicKey

},

groupedBandwidth

SEQUENCE OF SEQUENCE {

addresses SEQUENCE (SIZE (1 .. MAX)) OF

MultiAddress,

limits SEQUENCE OF BandwidthLimit

},

aliases SEQUENCE OF Identity,

relays SEQUENCE OF ContactDetails,

relayBandwidth SEQUENCE OF BandwidthLimit,

sentAt TimeLabel

}

Its members have the following meanings:

hashAlgorithms

The hash algorithms that can be used for concisely and uniquely identi-
fying this invitation in other messages sent between the two instances.
If this sequence is empty, or otherwise lists no algorithms supported by
the recipient, then this invitation can’t easily be used as part of new
bilateral agreements.

pathTypes

The path types and associated medium-term public keys that the sender
is willing to use for new agreements. This sequence must not include
multiple elements with the same path type and signature scheme. In
order for two instances to participate in transactions together, invita-
tions sent in each direction between them need to agree on at least one
path type and associated signature scheme.

38

groupedBandwidth

Groups of addresses the sender can be contacted on (again excluding
any redundant trailing /p2p/bafz...) and any bandwidth limits as-
sociated with each group. The bandwidth limits in an item in the
groupedBandwidth sequence don’t apply individually to the addresses
in the same item; they apply to the total bandwidth used by qualifying
messages sent to any of those addresses.

The class of messages these limits relate to consists of the following
messages sent by the recipient of the invitation to its sender:

� invitations,

� statements,

� relay offers,

� relay rejections,

� hints,

� partial agreements,

� missing information requests for any of the above, and

� freeze messages.

An empty sequence of bandwidth limits implies that the sender wishes
to place no limitation on the bandwidth used by such messages when
they’re sent to any of the associated addresses.

aliases

Other identities controlled by the sender. These can be used, for ex-
ample, to inform the recipient that the sender controls one or more
identities from which it will soon send relay offers. Using different
identities in its role as a relay might help to hide the network of trust
relationships from any attempted authoritarian surveillance, but is un-
likely to be effective if all the identities are contacted via the same
addresses. Also, if a different alias is used for each peer, surveillance of
those peers might become easier, rather than harder; on the other hand,
surveillance might become particularly difficult if aliases and addresses
are frequently changed.

Another possible use for aliases could be to facilitate a participant’s
transition to a new identity on a new device, without requiring human
intervention from all their peers.

An instance must not rely on a participant’s purported alias until it
has received both an invitation from one of the participant’s established

39

identities, listing the new alias, and an invitation from the new alias,
listing at least one of the established identities.

relays

The list of relays the sender wants to use from now on. This list should
include the sender’s instance itself, so that it can directly send complete
agreements to (and receive them from) its peer’s relays. If this list has
fewer than three elements, then this invitation can’t be used to create
new bilateral agreements.

relayBandwidth

Bandwidth limits that apply to the relay peering messages, pings, and
complete agreements sent by the recipient’s relays to a typical one of
the sender’s relays.

sentAt

The time at which this invitation was originally sent. This allows the
recipient to identify the most recent invitation, even if invitations are
reordered in transit or received multiple times. The recipient should
verify that the value of this member encodes a point in time in the
past. If the invitation is resent in response to a missing information
request, the value of this member must not be updated.

When an instance wants to invite another instance to be its peer, it must
send an invitation to that peer. If the recipient also wants to establish that
relationship, then it must respond with its own invitation.

As long as an instance wants to maintain the relationships it has with its
established peers, it must send new invitations to them whenever it wants
to make changes to its preferred hash algorithms, path types, medium-term
public keys, aliases, or relays. It should send new invitations whenever its
desired bandwidth limits change significantly.

An instance may put quite different contents, including different sets
of relays, into invitations it sends to different peers; however, participation
with two of its peers in the same circular exchange requires it to share the
same path type and signature scheme with both of those peers; there are also
requirements relating to the overlap between sets of relays that are to be used
in the same transaction. An instance must not use the same medium-term
public key with different peers, or reuse an old one with the same peer.

Instances should respect the bandwidth limits requested by their peers,
planning ahead when sending messages that might require future use of the
bandwidth to that peer and its relays.

40

During times of high load, instances may defer sending invitations; this
will temporarily inhibit their ability to form new mutually satisfactory bilat-
eral agreements with their peers.

5.2 Statement

5.2.1 Statement subject

A statement subject expresses the context for a statement.

-- Statement

StatementSubject ::= SEQUENCE {

fromTime TimeLabel,

toTime TimeLabel,

currency Currency

}

Its elements have the following meanings:

fromTime

The start of the period of time the statement relates to.

toTime

The end of the period of time the statement relates to. This must not
be earlier than the start of the period of time.

currency

The currency the statement relates to.

5.2.2 Range

A range represents a range of possible integers.

Range ::= SEQUENCE {

minimum INTEGER OPTIONAL,

maximum INTEGER OPTIONAL

}

If the minimum member is omitted, then the range has no lower limit
(or the lower limit is the lowest meaningful number, such as 0, if negative
numbers would be meaningless in that context); if the maximum member is
omitted, the range has no upper limit (or the upper limit is the highest
meaningful number in that context).

41

5.2.3 Statement

A statement is a message used for communicating the sender’s beliefs and
intentions regarding changes to the balance of obligations (in a particular
currency) between themself and the recipient.

Statement ::= SEQUENCE {

subject StatementSubject,

denominator PositiveInteger,

openingBalance INTEGER,

closingBalance INTEGER,

agreements SEQUENCE OF PublicKey,

balanceLimits Range,

transactionSizes Range,

maximumOutstanding NonnegativeInteger OPTIONAL,

durationOutstanding NonnegativeInteger OPTIONAL,

sentAt TimeLabel

}

subject

The subject of this statement, specifying the currency and period of
time it relates to.

denominator

Most of the remaining members of this statement, described below,
specify amounts or ranges in the currency specified in the subject. In
each case, a quantity in the currency is specified by a fraction in which
the denominator is the value of this denominator; the numerator is an
integer used either directly as the value of the member (in the case of
an amount) or as the value of its minimum or maximum member (in the
case of a range). In the case of balances, a positive number represents
an obligation owed by the sender to the recipient; a negative number
represents an obligation in the opposite direction. This denominator is
also used to indicate which denominators the sender would find accept-
able in payment specifications for the relevant currency. Therefore, the
sender should use the largest acceptible denominator here.

openingBalance

A numerator indicating the outstanding obligation at the start of the
period specified in the subject of this statement, taking into account
all relevant bilateral agreements whose reversal deadlines are strictly
earlier than the start of that period.

42

closingBalance

A numerator indicating the outstanding obligation at the end of the
period specified in the subject of this statement, taking into account
all relevant bilateral agreements whose reversal deadlines are strictly
earlier than the end of that period.

agreements

A list of all the bilateral agreements that permanently affected the
relevant balance and had a reversal deadline strictly before the end of
the specified period, but not strictly before the beginning of the period.
Each such bilateral agreement is identified by the public key associated
with it, generated as described in Section 5.11.3.

balanceLimits

A range indicating the sender’s current intentions (when the message
is sent) regarding the balance of obligations in the near future. This
range should include a minimum member, indicating that the sender
is unlikely to participate in transactions that might cause the balance
of obligations to drop below that value; similarly, if a maximum member
is included, then it indicates that the sender is unlikely to allow the
balance of obligations to rise above that value.

transactionSizes

A range indicating the sender’s intentions (if any) regarding the abso-
lute amount by which it will allow any one transaction to alter the bal-
ance of obligations. Because this range relates to an absolute amount,
negative values of its members are not meaningful.

maximumOutstanding

A numerator indicating the sender’s intentions regarding the maximum
absolute amount by which it will allow the transactions of uncertain
disposition at any one time to alter the balance of obligations.

durationOutstanding

The maximum number of nanoseconds the sender intends to allow any
one transaction to remain of uncertain disposition.

sentAt

The time at which the sender sent this statement.

The balanceLimits, transactionSizes, maximumOutstanding, and durationOutstanding
members do not alter the balance of obligations at any point in time, or affect
the effectiveness of any past, current, or future bilateral agreements between

43

the sender and recipient; they are merely indicative of which bilateral agree-
ments the sender is likely to agree to.

If an instance wants to establish a relationship (in a particular currency)
with another instance (for example, extending credit in that currency to
the other instance), then it should send a statement to the other instance,
communicating its intended upper and lower limits (if any) on the balance.
If the recipient is also willing to establish that relationship, then even if it
does not extend credit, it should respond with its own statement whose
subject specifies the same currency as in the statement it received.

The recipient of a statement that specifies a nonzero credit limit will
then be in a better position to determine which paywise partial agreements
are worth forwarding to the sender of the statement, and which will be re-
jected because they would violate, or risk violating, the stated credit limit.
Similarly, if the sender of a statement uses it to communicate a desired
upper limit on debts owed to the recipient, (or a desired lower limit on
debts owed in the other direction), this can aid the recipient in determining
which talkwise partial agreements to send. Any information conveyed in the
transactionSizes, maximumOutstanding, or durationOutstanding mem-
bers might also be useful in determining which partial agreements are more
likely to be accepted.

Another important factor in determining which partial agreements to
send is the current balance of obligations. Typically, the instances will in-
dependently come to the same conclusion regarding which of their bilateral
agreements result in payments being executed, and which don’t, based on
which complete agreements their relays report having received, and when
they report having first received them. Indeed, the protocol ensures that
there are strong incentives against any course of action that might lead to
disagreement between well-behaved peers with well-chosen deadlines and sets
of relays.

However, it’s theoretically possible that the talkwise instance might be-
lieve that it’s obliged to execute a payment, while the paywise instance be-
lieves that no such payment need be made. Once such a disagreement has
been detected, it will probably be easy to resolve amicably. The opposite
disagreement is more serious, but it can only occur if at least half of the
relays belonging to one of the instances are offline or misbehaving at some
point during the period of time in which the transaction’s outcome is in
doubt, or if the bilateral agreement’s deadlines were poorly chosen, or the
peers themselves misbehave.

In order to detect either kind of disagreement, instances should regularly
send statements ensuring that their peers have complete information about
their beliefs about changes to relevant balances; they should also check that

44

the statements they receive match their own beliefs about those changes. In
addition, each such update should include the sender’s currently desired
transaction and balance limits.

Note that a statement requires an exact list of bilateral agreements that
permanently affected the relevant balance, and have reversal deadlines during
the relevant period. For this reason, instances must not send statements
in which the end of the specified period is in the future.

Finally, if an instance wants to end the relationship in a particular cur-
rency with another instance, then it needs to do two things. First, it must
ensure that the balance becomes zero, and that there are no outstanding
bilateral agreements that might make the balance nonzero again. Then, it
must send a statement covering all past transactions that permanently af-
fected the balance and that have not been included in any statements it
has previously sent; the value of the balanceLimits member of the balance
summary included in that statement must include the minimum and maximum

members, whose values must be 0.

5.3 Relay offer

5.3.1 Latency probability object

A latency probability object is defined as follows:

-- Relay offer

LatencyProbability ::= SEQUENCE {

latency INTEGER,

probability REAL (0 .. 1)

}

latency

A number of nanoseconds.

probability

A probability.

Such an object, when included in a message sent by a relay to a primary
instance, is to be interpreted as an assertion that the relay can, at least until
a specific expiry time, complete a particular task within at most the specified
number of nanoseconds, with at least the specified probability. The specific
expiry time and task are determined by the context of the message in which
the latency probability object is included.

45

Latency probability objects aren’t intended to be used in isolation; in-
stead, a sequence of latency probability objects is typically used. The sender
of such a sequence should aim to be as informative as is reasonably prac-
tical, taking into account the information that will be most useful to the
recipient. This implies that each included latency probability object will
have the lowest value of the latency member that the sender is willing to
report for the given value of the probability member. However, in cases of
doubt, the sender should make somewhat conservative assumptions.

In the absence of a specific understanding regarding the information most
desired by the recipient, it is reasonable to assume that the recipient will
be more interested in information regarding latencies that are achievable
with high probability, and will not want very fine-grained information about
latencies achievable only with lower probability.

A sequence of latency probability objects should not include any ele-
ment whose information is logically implied by any other included element.
For example, if one element states that a latency of no more than 120 ms is
achievable with a probability of 0.9, then another element that states that
a latency of no more than 121 ms is achievable with a probability of 0.8
is redundant, and its exclusion shortens the message to be sent, which is
advantageous.

5.3.2 Relay offer

A relay offer is a message an instance can send its peer in order to offer to
act as a relay for that peer, within certain limits.

RelayOffer ::= SEQUENCE {

pathTypes

SEQUENCE (SIZE (1 .. MAX)) OF SEQUENCE {

pathType PathType,

signatureScheme SignatureScheme,

latencies SEQUENCE OF LatencyProbability

},

validUntil TimeLabel,

addresses

SEQUENCE (SIZE (1 .. MAX)) OF MultiAddress,

bandwidthLimits SEQUENCE OF BandwidthLimit,

p2pCircuitRelay BOOLEAN

}

46

pathTypes

The path types and associated signature schemes that the sender will
generally find acceptable for transactions covered by relay requests sent
by the recipient of this relay offer, together with information about the
time the relay is likely to spend processing complete agreements of each
type.

For the purpose of the latency probability objects, the relevant du-
ration begins at the time the relay has finished receiving a complete
agreement of the specified type, and ends when the relay has finished
recognizing and validating the complete agreement, and has determined
which destinations it’s obliged to forward it to. If the sender is going
to act as a relay for the recipient using multiple associated aliases, then
the latency measurements must take into account the time required
to disseminate to all such aliases (if they’re running on different ma-
chines) a complete agreement received by the identity from which this
offer is sent. The relevant expiry time is determined by the value of
the validUntil member, below.

validUntil

A time label, indicating that the sender of this relay offer will generally
assent to transaction relay requests from its recipient if their transac-
tions’ finality deadlines are no later than this time.

addresses

The addresses the sender is willing to use in its capacity as a relay.
Unless another message authorizes it, the recipient must not send any
relay-specific messages to any other addresses for this relay, or include
other addresses for this relay in the relays member of invitations it
sends to its peers. These addresses are associated with the identity
from which this offer is sent. If that identity is a libp2p peer ID, then
the addresses must not include a redundant trailing /p2p/bafz....

bandwidthLimits

A list of bandwidth limits. The class of messages these limits relate to
consists of the following messages sent by the recipient of this offer to
its sender:

� pings,

� relay requests,

� complete agreements, and

� missing information requests for receipts and tallies;

47

together with relay peering messages, pings, and complete agreements
sent to the sender by any of the recipient’s peers’ relays.

p2pCircuitRelay

A flag indicating whether the sender is also willing to act as the re-
cipient’s libp2p circuit relay [29], as well as acting as its circulex relay.
When an instance connects through a circuit relay, that instance and
the recipient should attempt to replace their connection with a direct
connection as quickly as possible.

5.4 Ping

A ping is a message that can be used by an instance (either a primary
instance or a relay) to assess the one-way communication latency from itself
to a specific destination.

-- Ping

Ping ::= SEQUENCE {

sentAt TimeLabel,

padding OCTET STRING

}

sentAt

A time label encoding the time at which the ping was sent.

padding

Arbitrary data, used for padding the ping to the desired length.

Pings can be relatively short messages, but instances should pad them to
the same length as typical complete agreements, so that the latency of a ping
better reflects the latency of a complete agreement. Alternatively, the same
effect may be achieved by padding or bundling messages in the encryption
or transport layer. However, instances and relays must not send large or
numerous pings to destinations from which they haven’t received a current
relay offer or relay peering message.

A relay must, in general, reply to each received ping with a corresponding
pong, as quickly as possible, assuming it has already sent a current relay
offer or relay peering message to the instance that sent the ping. However,
it should implement sufficient rate-limiting to protect itself from denial-of-
service attacks. Also, when under very high load, replying to pings is a lower
priority than forwarding relevant complete agreements, so instances may

48

temporarily ignore incoming pings, but this must be reserved for extreme
situations only, and instances must endeavour to avoid getting into such
extreme situations.

5.5 Pong

A pong is a message sent in response to a ping.

-- Pong

Pong ::= SEQUENCE {

pingSentAt TimeLabel,

receivedAt TimeLabel

}

pingSentAt

The time label included in the ping to which this pong is a reply.

receivedAt

A time label encoding the time at which the ping was received.

If the second time label in a pong encodes a time earlier than the time
encoded by the first time label, this indicates a discrepancy between the clock
belonging to the sender of the pong and that belonging to the recipient. In
such a case, the parties should attempt to correct the clock that is in error
(or both clocks, if both are in error).

If, before this correction occurs, the recipient of the anomalous pong
sends any latency report that includes a latency profile whose destination
member specifies the sender of the pong, then it should include in the
profile member a latency probability object whose latency member is
negative; this will inform the recipient of the latency report that the clock
discrepancy exists.

5.6 Relay request

5.6.1 Relay request context

A relay request context is a component of a relay request that indicates
whether the request is an indicative one, for a specific length of time, or
whether it relates to a specific transaction.

49

-- Relay request

RelayRequestContext ::= CHOICE {

until TimeLabel,

transaction TransactionIdentifier

}

until

This alternative is used in indicative relay requests. The time specifies
the end of the period that the request relates to.

transaction

This alternative is used in transaction relay requests. The request
relates to the specified transaction.

5.6.2 Relay request

A relay request is a message that can be used by an instance to request a
latency report from one of its desired relays.

RelayRequest ::= SEQUENCE {

context RelayRequestContext,

destinations SEQUENCE OF ContactDetails

}

context

The context of this relay request.

destinations

The list of destinations to include in the requested latency report.

There are two kinds of relay requests: indicative relay requests and trans-
action relay requests.

Indicative relay request Suppose an instance has received a relay offer
from a peer. Before relying on that relay for specific transactions, it might
want to determine the latency and reliability of communication from that
potential relay to the instance’s peers’ relays. For this purpose, the instance
can send an indicative relay request.

The recipient of an indicative relay request should respond to it with a
latency report if it would generally assent to transaction relay requests from
the same sender in which:

50

� the finality deadline for the transaction is no later than the time label
in the context of the indicative request, and

� the list of destinations is equal to or a subset of the list in the indicative
relay request

(provided that the transaction is of a type that a current relay offer indi-
cated was acceptable); otherwise it must not send a corresponding latency
report.

Transaction relay request A transaction relay request is used to request
not only a latency report, but also a commitment to act as a relay for a
specific transaction. The recipient of such a request must respond with a
corresponding latency report if, and only if, it assents to the request.

If an instance sends a relay multiple relay requests for the same trans-
action, then the requests are cumulative; if it has received a latency report
corresponding to an earlier relay request, it should not include the same
destinations in a later relay request for the same transaction.

Once a relay has agreed to a transaction relay request by sending the cor-
responding latency report, it must expeditiously forward to the destinations
specified in the latency report the complete agreements (for the specified
transaction) that it receives between the transaction’s completion and fi-
nality deadlines (inclusive of the completion deadline, but exclusive of the
finality deadline), at least until each destination has two distinct complete
agreements for that transaction. During this period of time, the relay must
accept connections and messages from the specified destinations (and from
its primary instance, the sender of the relay request), in order to forward any
relevant complete agreements that they send.

Note, however, the obligations in Section 5.11.2 regarding complete agree-
ments that the relay might receive before the completion deadline and choose
to use anyway. If the relay receives and forwards a complete agreement before
the transaction’s completion deadline, then it must not assume that the re-
cipients have not ignored it; instead, it must forward the complete agreement
again at the completion deadline, and fulfil all of its other obligations, as if
it had received the complete agreement at the completion deadline.

Where possible, instances should try to reduce the risk of head-of-line
blocking unnecessarily delaying the transmission of complete agreements. For
example, where QUIC is being used, each complete agreement should be
sent in a stream of its own. Where QUIC stream prioritization is available,
complete agreement streams should be given the highest priority.

A relay must not agree to a transaction relay request if the completion
deadline has already passed, and it has (or might have) already failed to fulfil

51

any of the obligations (to accept connections and messages, or to forward
complete agreements) that it would have had if it had agreed to the relay
request before the completion deadline.

If a relay receives the same complete agreement multiple times, it should
not forward it again to destinations that have already received it; also a relay
should not send a complete agreement back to a destination from which
it knows it has received that complete agreement, even if it received it from
that destination before the completion deadline.

A relay that has agreed to a transaction relay request must also send
receipts to its primary instance for the first two distinct complete agreements
(for the specified transaction) that it receives between the completion and
finality deadlines.

A relay that receives more than two distinct complete agreements for
the transaction during that period may forward a third one to any of the
specified destinations, and may send its primary instance a receipt for a third
one, but must not forward or send receipts for more than three.

Finally, after the finality deadline of the transaction, the relay must
send the primary instance a tally, indicating the number of distinct complete
agreements (for that transaction) for which it sent its primary instance a
receipt.

5.7 Relay peering message

A relay peering message is used by a relay to indicate its intention to relay
complete agreements to, and accept them from, the recipient of the message.
Its body is a RelayRequestContext.

If its body uses the until alternative, it’s an indicative relay peering
message. If a relay intends to send a latency report corresponding to an
indicative relay request, it must ensure that it has sent to each included
destination an indicative relay peering message covering the relevant period
of time.

If a relay peering message’s body uses the transaction alternative, it’s
a transaction relay peering message. If a relay intends to send a latency re-
port corresponding to a transaction relay request, it must first send to each
included destination a transaction relay peering message for that transac-
tion. Before including the destination in the latency report, it must have
received from that destination a transaction relay peering message for that
transaction.

52

5.8 Latency report

5.8.1 Latency profile

A latency profile is defined as follows:

-- Latency report

LatencyProfile ::= SEQUENCE {

destination Identity,

profile SEQUENCE OF LatencyProbability

}

destination

The destination this profile relates to.

profile

Information about latencies to the destination that are achievable with
various probabilities. The context in which the latency profile is in-
cluded determines the relevant expiry time for the latency probability
objects.

The task the latency probability objects relate to is the sending of a com-
plete agreement to the specified destination. The relevant measurement is
from the time (according to the relay’s clock) at which the relay has deter-
mined that it’s obliged to forward the complete agreement to the destination,
until the time (according to the destination’s clock) at which the destination
has finished receiving it.

Because the start and end times are measured by different clocks, it is
theoretically possible that the value of the latency member of an included
latency probability object might be negative. However, implementations are
strongly advised to be cautious in such situations; clock corrections might
suddenly and significantly alter the measured latency.

Furthermore, in such a situation, the destination might legitimately ig-
nore a complete agreement that it believes it has received before the comple-
tion deadline, but which the sender believes it has sent after that deadline.
Therefore, if a primary instance receives a latency profile containing a la-
tency probability object with a negative value of the latency member, then
it should not rely on the contents of that message — or on the behaviour
of that relay or destination — until the instance is sure that each has an
accurate clock.

The relay that sent the report of negative latency should attempt to
reconcile its clock with that of the destination, aiming for the correction of

53

whichever clock is in error. The owner of an instance with more influence
over the relevant destination than the relay has might be able to hasten the
correction (if the problem is with the destination) by reporting the problem
to the owner of the destination.

5.8.2 Latency report

A latency report is a message sent in reply to a relay request, indicating
assent to the request.

LatencyReport ::= SEQUENCE {

requestContext RelayRequestContext,

latencyProfiles SEQUENCE OF LatencyProfile

}

requestContext

The relay request context included in the relay request to which this
latency report is a reply.

latencyProfiles

For each of these latency profiles, its destination member is the
identity member of an element of the destinations member of the
original relay request. The sender of this latency report should in-
clude a latency profile for each destination in that request, except for
any destinations that it’s currently unable to communicate with. In
the case of an indicative relay request, the expiry time for these la-
tency profiles is the value of the until alternative of the relay request
context. In the case of a transaction relay request, the transaction
in question is identified by the transaction identifier included in the
transaction alternative of the relay request context, and the expiry
time for the latency profiles is the finality deadline of that transaction.

5.9 Relay rejection

If an instance’s relays report that they’re unable to reliably communicate
with one or more relays that were listed in an invitation that a peer sent to
the instance, then that instance will be unable to safely transact with that
peer unless the peer sends another invitation — one which doesn’t list the
troublesome relays. To inform the peer about which relays are problematic,
the instance can send a relay rejection.

54

The body of a relay rejection is a sequence of identities, listing the recip-
ient’s requested relays that the sender’s relays are unable to reliably commu-
nicate with.

An instance should not send a relay rejection for a group of its peer’s
relays if the group of its own relays that report inadequately reliable commu-
nication with them is a minority of its own relays and is no larger than the
problematic group of its peer’s relays; instead, it should assess the reliabil-
ity of those of its own relays that are reporting the problem, and consider
replacing them.

5.10 Hint

5.10.1 Hint subject

A hint subject specifies the transaction a hint relates to, as well as the direc-
tion the hint is intended to travel in.

-- Hint

HintSubject ::= SEQUENCE {

talkwise BOOLEAN,

transaction TransactionIdentifier

}

talkwise

If this flag is set, it indicates that the hint is a talkwise hint, to be sent
by instances to their potential talkwise neighbours for the transaction;
otherwise it’s a paywise hint, to be sent by instances to their potential
paywise neighbours.

transaction

The transaction the hint relates to.

5.10.2 Hint body

A hint body specifies the subject and target of a hint.

HintBody ::= SEQUENCE {

subject HintSubject,

target Target

}

55

5.10.3 Hint

A hint is a message that can simultaneously serve two purposes. First, it
specifies a target for pathfinding for a transaction; and second, when an
instance sends a hint to some of its peers, this indicates to them its willingness
to have them as neighbours in that transaction.

Hint ::= SEQUENCE {

body HintBody,

signature OCTET STRING

}

body

The body of the hint.

signature

A valid signature, under the initiator’s public key, of the COER en-
coding of a Signable object that uses the hintBody alternative and
contains the value of the body member of this hint.

The initiator of a transaction must not create a signature that is valid
for a hint unless it wants instances involved in pathfinding for the transaction
to attempt to create a path involving the details specified in the target. The
initiator should create two hints for the transaction, one for the talkwise
direction and one for the paywise direction.

If a talkwise hint’s currency member is present, it should specify a
currency the initiator expects to be used to pay its paywise neighbour or
another participant not far from it in the paywise direction. Similarly, if a
paywise hint specifies a currency, it should be one the initiator expects to be
used in the payment made by its talkwise neighbour or another participant
not far from it in the talkwise direction.

An instance that creates or receives a paywise hint for a transaction it is
willing to participate in should send it to peers it is willing to have as its
paywise neighbour for that transaction, but must not do so unless:

� it is the initiator of the transaction, or

� it has received the hint from a peer it is willing to have as its talkwise
neighbour.

The situation is symmetrical in the case of a talkwise hint — an instance
sends the hint to potential talkwise neighbours, but only if it created the
hint or received it from a potential paywise neighbour.

56

During times of high load, an instance should prioritize those of the
hints it receives that it judges most likely to result in successful transactions
involving itself.

Receipt of a hint proves that there is at least a chain of communica-
tion from the initiator to the recipient; ideally it indicates that the chain of
communication coincides with a chain of willing participants in the specified
direction (either talkwise or paywise). However, it is possible that the chain
of communication includes an instance that is trusted by neither the initia-
tor nor the recipient, and which has no intention of extending any partial
agreements it might receive for that transaction. Therefore, instances must
not rely on receipt of a hint as proof of the existence of a chain of willing
participants; instead, an instance that wants to increase the likelihood that
it is involved in a particular transaction should, whenever possible, send
hints and partial agreements for that transaction to multiple peers.

It might seem pointless to create or forward a hint with an empty target
(that is, one that doesn’t specify a particular currency or payload); after all, it
fails to specify a common target for pathfinding, and the partial agreements
will prove the existence of chains of willing participants, whereas the hint
can only be indicative. However, the hint, which only needs to be forwarded,
might easily travel faster than the partial agreements, which need to be
extended by each interested recipient. An instance that receives both the
talkwise and the paywise hints for a transaction can forward the talkwise
hint to the neighbour or neighbours it received the paywise hint from, and
vice versa; then any instance that receives a hint from one direction and a
partial agreement from the other will be much better informed about which
peers to send partial agreements to. In this way, even hints with empty
targets can facilitate pathfinding.

5.11 Partial agreement

5.11.1 Payment specification

A payment specification is used in a message sent between instances to specify
the details of a proposed payment between those instances.

-- Partial agreement

PaymentSpecification ::= SEQUENCE {

amount Amount,

reference

SEQUENCE {

header ReferenceHeader,

57

answers SEQUENCE OF LimitedString

} OPTIONAL

}

amount

The amount of the payment. Its denominator should be a common
factor of the denominators specified in the most recent statements (for
the relevant currency) sent in each direction between the sender and
recipient of the message containing this payment specification.

reference

If this element is absent, it indicates that the payment is to be made
by recording an increase in the amount the talkwise partner owes the
paywise partner, a decrease in the amount the paywise partner owes
the talkwise partner, or both, if the paywise partner initially owes the
talkwise partner an amount smaller than the total payment to be made.

If this element is present, it indicates that within the protocol, the
“payment” to be made by the talkwise partner to the paywise partner
is simply the acknowledgement that the talkwise partner has (perhaps
indirectly) received from the paywise partner an amount equivalent to
the specified amount. This can be useful if such an acknowledgement
triggers the talkwise partner’s obligation to supply goods or services
to the paywise partner, arising from an agreement made outside the
protocol; it can also be useful if the paywise partner wants to make a
donation to the talkwise partner, or if the paywise and talkwise part-
ners are actually both instances owned by the same person. When the
payment specification is based on a prior payment request, the header
element is copied directly from the referenceHeader element of the
payment request. The answers are the paywise partner’s responses to
the prompts in the payment request. In general, because this requires
information from the payer, a payment specification that contains a
reference will be first sent in the talkwise direction from the payer to
the payee, but once the payee has the information, they can include
it in paywise partial agreements, thus broadening the options for suc-
cessful pathfinding. Alternatively, the talkwise partner can send the
first payment specification with a reference if they’re using a reference
scheme that requires no information from the paywise partner; in this
case, an empty sequence is used as the answers element.

Example 2. In the scenario of Example 1, Alice wants Frank to actually
send her a smartphone, not merely record the fact that he owes her a smart-
phone. So Alice orders a smartphone from Frank, who agrees to send her one

58

if she pays him 450,000 krw via circulex. He creates a payment request us-
ing his reference scheme “v1” and containing the order reference “441a25a”;
he requires no further information from Alice, as she supplied her shipping
address when she placed her order. Alice’s instance could send to Frank’s
instance the following payment specification as part of a message attempting
to initiate a circulex payment:

80 The reference element is present.
Amount:

81 4b5257 Standard currency: krw
03 06ddd0 Numerator: 450,000
01 01 Denominator: 1

Reference:
Header:

02 c681 Scheme: “v1”
07 848481b18285b1 Fixed field: “441a25a”

00 Zero answers

If this payment specification is used (in a context in which Alice’s instance
is the paywise peer of Frank’s instance) as part of the basis of a successful
circulex transaction, then Frank will have acknowledged having received the
equivalent of 450,000 krw from Alice; this will trigger his obligation to send
her the smartphone.

Example 3. Gareth is a gardener who pays for goods and services via cir-
culex by promising to do gardening work for his friends and relatives. He
uses circulex to record (among other things) the number of hours of gardening
work he owes each of his friends; Hermione is one such friend. This payment
specification is for 1 hour and 20 minutes of work to be done in Hermione’s
garden (assuming it’s used as part of the basis of a successful transaction,
having been sent between Gareth’s and Hermione’s instances, with Gareth’s
being the talkwise partner):

00 The reference element is absent.
Amount:

82 18 User-defined currency in 24 bytes
98bfc5c2c370bfb67097b1c2 “Hours of Gareth’s labour”
b5c4b877c370bcb1b2bfc5c2

01 50 Numerator: 80
01 3c Denominator: 60

59

5.11.2 Bilateral agreement

A bilateral agreement is used as part of a message sent between two instances
to establish potential deadlines, public keys, lists of relays, and payment
details for a transaction. The context in which it is sent determines which
instance is the talkwise instance and which is the paywise instance.

BilateralAgreement ::= SEQUENCE {

deadline TimeLabel,

talkwiseInvitation Hash,

reversalDeadline TimeLabel,

paywiseInvitation Hash,

payments

SEQUENCE (SIZE (1 .. MAX)) OF PaymentSpecification

}

deadline

This agreement’s deadline.

talkwiseInvitation

The hash of the COER encoding of an invitation previously sent by
the talkwise instance to the paywise instance. This establishes the
medium-term public key and list of relays employed by the talkwise
instance for the purposes of this bilateral agreement.

reversalDeadline

This agreement’s reversal deadline, which must be later than the dead-
line specified above.

paywiseInvitation

The hash of the COER encoding of an invitation previously sent by
the paywise instance to the talkwise instance. This establishes the
medium-term public key and list of relays employed by the paywise
instance for the purposes of this bilateral agreement.

payments

One or more payments to be made by the talkwise partner for the
benefit of the paywise partner. Multiple payment specifications in the
sequence specify components of a composite payment; they are not
options from which one of the partners may choose one.

The instances must execute the specified payments if both of the follow-
ing are true:

60

� before this bilateral agreement’s deadline, a complete agreement built
using this bilateral agreement has reached more than half of the talk-
wise instance’s relays; and

� more than half of the paywise instance’s relays have received no other
complete agreement for the same transaction before the reversal dead-
line (not even a different complete agreement that was also built using
this bilateral agreement).

If a relay is also the initiator of a transaction, and it creates a complete
agreement for it, then it is considered to have received that agreement at the
first point in time at which it begins sending it to any other instance or relay.

If a relay receives a complete agreement and acts on it in any way that
might create obligations for other instances or relays (such as by forwarding
it, whether or not it was obliged to do so), then it must fulfil all of its own
obligations arising from any bilateral agreement or other arrangement, even
if it received the complete agreement before the completion deadline, or from
an unexpected source. In the case of an early complete agreement, a relay
acting on it has the same obligations as it would have had if it had received
the complete agreement at the completion deadline.

Because relays aren’t obliged to accept connections and carefully examine
messages received from arbitrary sources, an instance must not assent to
a bilateral agreement unless it’s received satisfactory latency reports (corre-
sponding to transaction relay requests for the relevant transaction) from all
of its relays regarding all of its partner’s relays.

Because the hashes of invitations are used, rather than the invitations
themselves, each instance needs to have records of the contents of the orig-
inal invitations, and needs to be able to recognize them by their hashes. It
is recommended that the hashes used are those of the most recent invita-
tions communicated between the instances (as determined by their sentAt
members), and that they are hashed using an algorithm included in the
hashAlgorithms members of both those invitations. Each hash must be of
an invitation that listed at least three relays.

Example 4. After Example 1, Carlos owes Bob 100 usd. Carlos is assisting
in an attempt to execute another payment via circulex. Carlos’s paywise
neighbour wants him to pay 500 usd, so if Bob is Carlos’s talkwise neigh-
bour again, then Bob agreeing to forgive Carlos’s remaining debt would be
insufficient to compensate for Carlos’s obligation to his paywise neighbour.
However, it can be used as part of the payment, with the remainder covered
by Bob agreeing that he owes Carlos 600 nzd.

61

The following is an example of a bilateral agreement that encodes such
an arrangement. It would be part of a message that Carlos’s instance sends
to Bob’s instance, and that message would establish that Carlos’s instance
is the paywise peer.

40000000573522aa3a7b2cd4 Deadline: 2016–05–13 12:41:04.981150932
Talkwise invitation:

01 19 SHAKE256
40 512-bit hash:
7be3579ba7231c35

f2d257ea4e64973f

8a593afd3860b6c9

a205d53ce736ee6d

539a1c5f69904540

f56217685392a544

081ce12d2b35031a

70690592ab95e31c

40000000573522c22a8e8aec Reversal deadline: 2016–05–13 12:41:28.713984748
Paywise invitation:

01 19 SHAKE256
40 512-bit hash:
64d340cdf78ebf92

489fbdbcb698a2a7

96ffc58d5b35e375

7c7e686d67cad606

3652ae05f7756697

eda1305479d567ba

ab37480854c04322

4be707fd08dc8746

01 02 Two payment specifications:
First payment specification:

00 The reference element is absent.
Amount:

81 555344 Standard currency: usd
02 2710 Numerator: 10,000
01 64 Denominator: 100

Second payment specification:
00 The reference element is absent.

Amount:
81 4e5a44 Standard currency: nzd
03 00ea60 Numerator: 60,000

62

01 64 Denominator: 100

5.11.3 Partial agreement

A partial agreement is a message that can be used to incrementally construct
a complete agreement for a transaction.

PartialAgreement ::= SEQUENCE {

agreement BilateralAgreement,

path SignedPath

}

agreement

A bilateral agreement whose deadline is after the completion deadline
of the transaction specified in the signed payment path below, and
whose reversal deadline is no later than the finality deadline of that
transaction.

path

A signed payment path.

When a partial agreement is sent by an instance other than the initiator
of the transaction, it must be the case that the sets of the sender’s relays for
the purposes of its talkwise and paywise bilateral agreements overlap in such
a way that they each include more than half of the other set. One of these sets
is specified by this partial agreement, and the other is specified by a partial
agreement previously received by the sender of this one. Greater overlap
adds to safety, but smaller overlap might make authoritarian surveillance of
the sender more difficult. Another way to achieve such obfuscation would be
to use the same set of relays, but ensure that they are identified by different
peer IDs and contacted via different IP addresses.

In the case of a simple path with the ristretto255-shake256 signature
scheme, where a partial agreement is the body of a message sent between
instances, the last public key in the signed payment path must be a tempo-
rary public key generated in the way specified in Section 3.5; the sender acts
as instance 1, the recipient as instance 0; the role of the data x is played by
the COER encoding of a PartialAgreement with the same contents as the
one being sent, but omitting the last public key and signature, since they
are yet to be determined when the key is being generated. Other signature
schemes, if they are to be used with the simple path type, must specify rules
that ensure that the last public key in the signed payment path is unique

63

to the bilateral agreement and all preceding parts of the signable path, and
that only the recipient is able to create valid signatures under that public
key. This last public key is the one used to identify this partial agreement
for the purposes of statements and missing information requests.

In the case of the simple path type, a partial agreement can be created
by the initiator of a transaction, or adapted by a recipient, who creates a
new partial agreement by constructing a bilateral agreement they are willing
to offer to one of their peers, adding the peer’s temporary public key (gener-
ated in accordance with the rules above) to the signed payment path (along
with the necessary additional signature). Instances may also add more of
their own public keys to the signed payment path before the public key they
generated for their peer (also adding the necessary signatures), in order, for
example, to obscure their proximity to the initiator.

When deciding whether to create a signature of the form that can appear
in a simple signed payment path, there are two major considerations:

� the provenance of the key under which the signature is valid, and

� the provenance of the following public key in the signed payment path.

Regarding the first, an instance must not create the signature unless
one of the following is true:

� it generated the key itself (for example, as the initiator, or in order to
pad the signed payment path with extra keys); or

� both of the following are true:

– the key was generated in accordance with the rules above, and

– the instance agrees to the bilateral agreement that was used to
generate the key.

Regarding the following public key, an instance must not create the
signature unless one of the following is true:

� it generated the key itself, and it is the only entity that knows or can
calculate a discrete logarithm (base B) of that public key; or

� all of the following are true:

– the key was generated in accordance with the rules above,

– the instance agrees to the bilateral agreement that was used to
generate the key, and

64

– the instance reasonably believes that the recipient of the partial
agreement is the only entity that knows or can calculate a discrete
logarithm (base B) of that public key.

Additionally, an instance should not create such a signature if it would
be unusable as part of a complete agreement, either because a relevant dead-
line has already passed, or because the signed payment path would be too
long (taking into account that the last public key in the signed payment path
of a complete agreement has to be the same as the initiator’s public key).

Path types other than the simple path type must specify rules that sim-
ilarly ensure that a valid complete agreement can only be created with the
consent of all of the parties included in the agreement, that they can predict
and limit which of their bilateral agreements can appear together in the same
valid complete agreement, and that partial agreements can be uniquely iden-
tified by public keys for the purposes of statements and missing information
requests.

5.12 Complete agreement

A complete agreement is a message used to indicate which path (if any) was
chosen for a particular transaction. A second complete agreement for the
same transaction can be used to reverse the execution of the transaction.

-- Complete agreements

CompleteAgreement ::= SEQUENCE {

path SignedPath,

finalSignature OCTET STRING

}

path

A valid signed payment path. In the case of the simple path type,
the SimplePath object it contains must list exactly 32 public keys,
and the last public key must be the same as the initiator’s public key.
Other path types should ensure that the complete agreement leaks as
little information as possible about who is or isn’t included in the path,
as the simple path type does here by fixing the size and structure of
complete agreements, regardless of the actual number of participants
in the path.

finalSignature

A valid signature, under the initiator’s public key, of the COER en-

65

coding of a Signable object using the completeAgreement alternative
and containing the same SignablePath as the SignedPath above.

Two complete agreements are considered to be the same as each other if
they are both valid and contain the same SignablePath, even if they disagree
on one or more of the signatures.

The initiator of a transaction must not create a signature suitable for
use as the final signature in a complete agreement except when doing so
for one of the purposes described below. Note that it is not compulsory
for implementations to be able to implement (or even distinguish between)
all of the following uses of complete agreements. Regarding recognition of
complete agreements, an instance that merely wants to participate in a trans-
action only needs to discern which complete agreements are valid ones (as
defined above) for that transaction, and need not concern itself with the cir-
cumstances under which the complete agreement was created. Regarding the
creation of complete agreements, an instance that wants to be the initiator
of a transaction only needs to be able to produce complete agreements in ac-
cordance with the rules of Section 5.12.1 (though also being able to produce
them in accordance with the rules of Section 5.12.3 might encourage its peers
to be more coöperative with it in future); being able to produce complete
agreements suitable for the other circumstances is optional.

The rules in the subsections that follow are designed for path types in
which every point in a path has exactly one immediate paywise neighbour,
and exactly one immediate talkwise neighbour, which is the case for the sim-
ple path type. If another path type allows points in its paths to have multiple
talkwise or paywise neighbours, then it must similarly specify rules that, if
followed, prevent an initiator from accidentally incurring uncompensated or
insufficiently compensated obligations; the rules should not prohibit po-
tentially desirable uses of complete agreements, even if such uses would be
unusual.

5.12.1 Executing a transaction

A typical complete agreement includes a signed payment path with keys and
signatures belonging to multiple instances; it is constructed by the initiator
in order to execute the transaction along that payment path.

In such a case, the initiator must not create a signature that can be
used as the final signature in the complete agreement unless:

� it wants to execute the transaction along that payment path, and is
able to fulfil its payment obligations for that payment path;

66

� it can and will ensure that the complete agreement reaches (and can-
not legitimately be ignored by) its talkwise partner’s relays before the
deadline specified in the relevant bilateral agreement with that partner;
and

� it has not already created such a signature suitable for a different com-
plete agreement for the same transaction.

5.12.2 Reversing a transaction

If a complete agreement has caused the execution of a transaction, but the
relevant reversal deadline hasn’t yet passed, the initiator can reverse the
transaction by using a trivial complete agreement — that is, a complete
agreement for which the initiator has sole control over all of the secrets
associated with all of the public keys in the signed payment path. (Note
that only the initiator will be able to know with certainty that the complete
agreement is trivial, unless it deliberately proves this fact to others.)

In such a case, the initiator must not create a signature that can be
used as the final signature in the complete agreement unless:

� it wants to reverse the original transaction; and

� it can and will ensure that the trivial complete agreement reaches (and
cannot legitimately be ignored by) the relays of its paywise partner (in
the original transaction) before the reversal deadline specified in the
relevant bilateral agreement with that partner.

It is also possible to use a nontrivial complete agreement for this purpose,
as long as it differs from the original complete agreement in the sense defined
above. However, this is not recommended; an instance that discovers that
two different nontrivial complete agreements exist for the same transaction
(such as any instance that controls a key in each signed payment path) might
suspect that one of the complete agreements was the result of the initiator’s
instance malfunctioning or leaking a secret.

Furthermore, in order to prevent the execution of the transaction specified
by the second nontrivial complete agreement, the initiator must ensure that
the original complete agreement reaches (and cannot legitimately be ignored
by) the relays of its paywise partner (in the second complete agreement)
before the reversal deadline specified in the relevant bilateral agreement with
that partner.

67

5.12.3 Committing to non-execution

If the initiator of a transaction simply refrains from creating any complete
agreement for that transaction, the other potential participants will need to
wait until the expiry of the deadlines in their bilateral agreements before they
can rely on the non-execution of the transaction; this might unnecessarily
tie up their funds, making them less inclined in future to make bilateral
agreements for transactions that appear to originate from the same initiator.

To avoid this, the initiator might want to promptly commit to the non-
execution of the transaction, as soon as it has decided it will not execute it.
This can help the other potential participants in the transaction by assuring
them that they don’t need to remain prepared for the possibility that they
will have to participate in the execution of that transaction.

In order to make this commitment, the initiator can create a trivial com-
plete agreement and send it to its peers (via their relays). The initiator must
not create a signature suitable for use as the final signature in such a com-
plete agreement unless it wants to irrevocably commit to the non-execution
of the transaction.

The initiator may send such a complete agreement to its peers before
the completion deadline, in order to inform them as soon as possible of their
non-participation in the transaction. However, some relays that receive the
complete agreement before the completion deadline might ignore it, so the
initiator should resend it at or after the completion deadline, in order to
ensure that all interested instances are aware of their non-participation in
the transaction.

5.12.4 Partially executing a transaction

It is possible for the initiator of a transaction to own another, intermedi-
ate, public key (or contiguous sequence of public keys) in a signed payment
path, both preceded and followed by at least one public key controlled by
another instance. The initiator might wish to arrange for this to happen
if, for example, pathfinding for the transaction has discovered an arbitrage
opportunity.

It is then possible for the initiator to arrange for the partial execution
of the transaction, executing some of the bilateral agreements in the signed
payment path after the deadlines in the others have expired. The initiator
might want to do this if, for example, it has not created a complete agree-
ment before the deadline in the talkwise bilateral agreement associated with
its primary public key in the signed payment path (that is, the public key
specified in the transaction identifier).

68

In such a case, the initiator must not create a signature suitable for use
as the final signature in the complete agreement unless:

� the deadline in the paywise bilateral agreement associated with its in-
termediate public key has already passed;

� it wants to execute the remainder of the transaction (talkwise from its
intermediate public key, and paywise from its primary public key), and
is able to fulfil its payment obligations for that part of the transaction;

� it can and will ensure that the complete agreement will reach (and can-
not legitimately be ignored by) the relays of its partner in the talkwise
bilateral agreement associated with its intermediate public key, before
the deadline in that bilateral agreement; and

� it has not already created a signature suitable for a different complete
agreement for the same transaction.

Note that, in the simple path type, if the talkwise flag in the SimplePath
object is unset, it is much simpler (and probably less prone to error) if the
initiator removes the public keys in the signed payment path after its in-
termediate public key (retaining only the relevant signatures) and uses the
result to construct a complete agreement for use as in Section 5.12.1.

5.12.5 Partially reversing a transaction

Similarly, suppose the initiator of a transaction has executed the transaction
using a signed payment path in which it controls an intermediate public key.
And suppose the initiator wants to partially reverse that transaction — per-
haps it wants to reverse the purchase for which the transaction was originally
intended, without reversing the execution of an arbitrage opportunity that
was found during pathfinding.

The initiator can achieve this by creating — at a specific time — a triv-
ial complete agreement (or any complete agreement different from the one
originally used to execute the transaction, though Section 5.12.2’s caveats
about nontrivial complete agreements apply here, too), and sending it to the
paywise neighbour of its intermediate public key.

In this case, the initiator must not create a signature suitable for use
as the final signature of the second complete agreement unless:

� the reversal deadline in the talkwise bilateral agreement associated with
its intermediate public key has already passed;

69

� it wants to reverse the portion of the transaction that is paywise of its
intermediate public key and talkwise of its primary public key; and

� it can and will ensure that the second complete agreement will reach
(and cannot legitimately be ignored by) the relays of its partner in the
paywise bilateral agreement associated with its intermediate public key,
before the reversal deadline specified in that bilateral agreement.

Note that in both this case and that of partial execution, the part of the
transaction that is executed and remains executed is the part that is paywise
of the initiator’s primary public key and talkwise of its intermediate public
key.

A related note is that if the initiator wants to reverse a transaction that
was partially executed, the rules to follow are usually those of Section 5.12.2,
not those of this section. The exception is if the initiator controls multiple
intermediate public keys, with other instances’ public keys before, after, and
between them; in that case, the initiator might at first want to execute only
part of the signed payment path constructed during pathfinding, and then
later want to reverse only part of that partially executed transaction; then
this section is the applicable one.

5.13 Receipt

A receipt is a message that a relay can send to its primary instance to inform
that instance about when the relay received a particular complete agreement.

-- Receipt

Receipt ::= SEQUENCE {

receivedAt TimeLabel,

agreement CompleteAgreement

}

receivedAt

The earliest time at which the relay sending this receipt received the
included complete agreement. If the relay first received the complete
agreement before the completion deadline, and chose not to ignore it,
then this time label can encode any time between the time at which the
relay first received the complete agreement and the completion deadline
(inclusive).

agreement

A complete agreement.

70

Because a receipt contains a whole complete agreement, an instance is
considered to have received that complete agreement as soon as it has received
a receipt that contains it.

5.14 Tally

A tally is a message sent by a relay to a primary instance to confirm to
that instance the number of distinct complete agreements for a particular
transaction for which the relay sent the instance receipts.

-- Tally

Tally ::= SEQUENCE {

transaction TransactionIdentifier,

receiptsSent INTEGER (0 .. 3)

}

transaction

A transaction identifier.

receiptsSent

The number of distinct complete agreements for the specified transac-
tion for which the relay sent the instance receipts.

A relay must not send to any instance a tally for a transaction before the
transaction’s finality deadline. After a relay has sent a tally to an instance, it
must not send that instance any receipts for any complete agreements for
that transaction, except those complete agreements for which it has already
sent the instance receipts.

5.15 Missing information request

A missing information request is a message that can be used to request
information that the sender doesn’t have.

-- Missing information request

REQUESTABLE ::= CLASS {

&type MessageType UNIQUE,

&IdentifiedBy

} WITH SYNTAX {

&type,

&IdentifiedBy

71

}

Requestable REQUESTABLE ::= {

{experimental, Experimental } |

{invitation, Hash } |

{statement, StatementSubject } |

{hint, HintSubject } |

{partialAgreement, PublicKey } |

{receipt, TransactionIdentifier } |

{tally, TransactionIdentifier },

...

}

MissingInformation ::= SEQUENCE {

type REQUESTABLE.&type ({Requestable}),

identifiedBy

REQUESTABLE.&IdentifiedBy ({Requestable}{@type})

}

END

type

The type of message being requested.

identifiedBy

An object specifying which information of the relevant type is being re-
quested. The following subsections explain the meaning of this member
for each requestable type.

The recipient of a missing information request must, in general (assum-
ing that it’s both possible and practical to do so), respond with the requested
information, but only if the requester would ordinarily have access to that
information in the normal course of operation of the circulex protocol. Each
instance should ensure that its policy regarding responding to missing infor-
mation requests doesn’t make it unnecessarily vulnerable to denial-of-service
attacks.

Implementations must take care in determining when to respond to miss-
ing information requests with quoted messages, and when to respond with
unquoted messages.

72

5.15.1 Request for invitation

If an instance is trying to interpret a bilateral agreement and finds it doesn’t
have a record of the invitation corresponding to one of the hashes, it can
request that the other party to the bilateral agreement sends the invitation.
In such a case, the missing information request’s type is invitation, and
its identifiedBy member is the hash for which the corresponding invitation
is being requested.

If an instance has lost its copy of one of its own invitations that it sent in
the past (or never associated the invitation with its hash under the algorithm
being used in a bilateral agreement), it can use such a request to ask the
recipient to send back a copy of the invitation, but if the peer is able to fulfil
that request, it must do so using a quoted invitation, not an unquoted one.

5.15.2 Request for statements

If an instance lacks information from one of its peers regarding a particular
period of time during which a particular account was (or might have been)
active, it can request the relevant statements from that peer. In such a case,
the missing information request’s type is statement and its identifiedBy
member is a StatementSubject specifying the currency and period of time
that statements are being requested for. The end of the period of time must
not be in the future when the request is sent.

A valid response to such a request consists of one or more statements for
the specified currency that together cover the specified period of time.

5.15.3 Request for hint

Suppose an instance has received a partial agreement from one of its peers,
and it is interested in building on that partial agreement in an attempt to
participate in that transaction. But suppose also that the instance hasn’t
received a relevant hint for the transaction, and wants the information that
such a hint might contain, in order to make a better-informed decision about
whether and how to build on the partial agreement. In such a case, the
instance can request a hint from the peer that sent the partial agreement;
it does so by sending a missing information request whose type is hint and
whose identifiedBy member is the subject of the hint it wants to receive.

An instance that receives such a request, but lacks the means to respond
to it, can forward the request back to the relevant peers of its own, from which
it received the bases of any partial agreements it had sent to the requester;
if it receives a response, it can then forward that to the original requester.

73

Requests for hintsmay also be sent in other circumstances, but the benefit
of doing so might be negligible.

5.15.4 Request for partial agreement

Suppose an instance receives a statement from one of its peers, but has no
record of the bilateral agreement associated with one of the public keys listed
in the statement. The instance can use a missing information request to ask
its peer for the original partial agreement that contained the relevant bilateral
agreement. In such a case, the type of the missing information request is
partialAgreement, and its identifiedBy member is the public key whose
associated partial agreement is being requested.

The recipient of such a request should respond with the corresponding
partial agreement, but only if that partial agreement was originally sent (in
either direction) between the sender and the recipient of the request.

5.15.5 Request for receipts

Suppose an instance receives a tally from one of its relays, and the tally
indicates that the relay sent more receipts for that transaction than the
instance received. Then the instance can use a missing information request
to ask its relay to resend the receipts for that transaction. The type of such a
missing information request is receipt and its identifiedBy member is the
transaction identifier of the transaction whose receipts are being requested.

The recipient of such a request should respond by resending the receipts
that it sent to the requester for that transaction.

5.15.6 Request for tally

Suppose an instance has received from one of its relays at least one latency
report for a particular transaction, and suppose that the instance has al-
lowed a reasonable length of time for communication latency from that relay
after the transaction’s finality deadline, but it hasn’t yet received a tally for
that transaction from the relay. The instance can use a missing information
request to ask the relay to resend the tally. In such a case, the type of the
missing information request is tally and its identifiedBy member is the
transaction identifier of the transaction for which the tally is requested.

The recipient of such a request should respond by resending (or sending)
a tally for the specified transaction, but only if it sent at least one latency
report for the transaction to the requester, and the transaction’s finality
deadline has already passed.

74

5.16 Freeze message

A freeze message can be used by an instance whose secrets have, or might
have, been leaked, to prevent further misuse of those secrets. Until the
time specified in the body of the freeze message, the sender and recipient
should refrain from sending unnecessary messages to each other, and must
refrain from taking any actions that will or might result in any bilateral
agreement between them becoming part of the basis of any new complete
agreement. However, they must both continue to fulfil any commitments
they’ve already made to each other, such as to relay complete agreements for
certain transactions.

User interfaces should make it easy for their users to send simultaneous
freeze messages to all their peers, initially with a body specifying a time in
the near future (perhaps a few minutes away). The interface should then
assist the user to understand the purpose and effect of freeze messages, so
that the user can decide whether to send further freeze messages with a body
specifying a time in the more distant future, giving them time to investigate
whether their secrets have, in fact, been leaked, and whether to send final
freeze messages with a body specifying a time so far in the future that the
messages have essentially permanent effect.

If a user’s peer has sent a permanent freeze message, the user will probably
want to transfer their circulex relationship with that peer to the peer’s new
cryptographic identity. There are other reasons a user might want to perform
such a transfer — for example, if their peer has lost the mobile phone that
held their circulex secrets — so user interfaces should make it easy for
users to perform such transfers (with the cooperation of the relevant peer),
regardless of the reason, and regardless of whether the peer still has access
to their old cryptographic identity.

6 Security considerations

Because circulex is intended to be private by design, and because its security
depends in part on the privacy of certain secrets, it’s useful to consider its
security and privacy simultaneously. Furthermore, because it’s intended as
a decentralized system, this section will consider threats to “security” in the
broadest sense, including threats to the decentralized nature of the network.

It is, however, worth considering different kinds of threats from different
kinds of people or organizations. To put names to the threats, we have:

� OSIRIS, a terrorist organization that wishes to steal money from the
circulex network or to disrupt financial infrastructure such as circulex,

75

but has no special technological capabilities;

� Big Brother [28], which wishes to extend its mass surveillance of com-
munications to conduct mass surveillance of circulex activity; and

� Goliath Corporation [8], a large commercial organization, which wants
to establish or maintain a market dominance in transactions sufficient
to extract economic rents from them.

6.1 OSIRIS

6.1.1 Theft

Circulex’s cryptography is designed to prevent OSIRIS from stealing money
by forging signatures or otherwise impersonating other participants. Freeze
messages are intended to limit what OSIRIS can do if it’s discovered that it
has stolen circulex secrets without stealing any physical device.

If a suitable alias has been set up on another device before the theft of
the primary device, freeze messages could also be used to halt theft of funds
even after the theft of a device containing circulex secrets. The device that
holds the alias would need to be kept up to date about which destinations
would need to receive the freeze messages in such an event. This defence
could be integrated with more general-purpose privacy and security software
that can be used to remotely disable a stolen device.

However, like any other participant, OSIRIS could easily steal money
from anyone who chooses to trust it, by simply refusing to pay the debts it
accrues through circulex.

A more difficult question to answer is whether OSIRIS can steal money by
interfering with the timely transmission of complete agreements. To achieve
this, OSIRIS would need to ensure a complete agreement reached its talkwise
neighbour’s relays on time (so that OSIRIS receives a payment from that
neighbour), but prevent the complete agreement from reaching its own relays
in time to trigger its obligation to pay its paywise neighbour. In order to have
the complete agreement to send to its talkwise neighbour’s relays, without
having received it from its paywise neighbour’s relays, OSIRIS would need to
be the initiator of the transaction, but it could disguise this fact, even from
its neighbours, by padding the partial and complete agreements it generates
with extra public keys, and adding corresponding delays to deadlines and
transmission of messages.

OSIRIS can easily prevent the complete agreement from reaching its own
relays by ensuring that all of its relays are under its control, and taking
them offline at the crucial time. However, this attack cheats only OSIRIS’s

76

paywise neighbour, who has chosen to trust OSIRIS; circulex makes no claim
to protect against such attacks. (If the trust relationship is one-way, and
OSIRIS’s payment was to be a reduction in the amount its paywise neighbour
owed to it, then that neighbour can simply refuse to pay more than they think
they owe OSIRIS.) It’s worth noting, however, that unlike simply refusing
to pay its debts, this attack can be made to appear not to be the deliberate
choice of the attacker.

In a more sophisticated attack, OSIRIS might try to ensure that its pay-
wise neighbour’s relays are all offline at the crucial time, and therefore unable
to forward the complete agreement to OSIRIS’s relays. It might attempt to
achieve this via a distributed denial-of-service attack on its paywise neigh-
bour’s relays’ IP addresses, for example. If successful, this attack would result
in OSIRIS’s paywise neighbour’s paywise neighbour (say, Bob) being obliged
to pay his paywise neighbour, but not receiving a payment from OSIRIS’s
paywise neighbour (say, Alice), since her relays didn’t receive the complete
agreement on time; OSIRIS would receive a payment from its talkwise neigh-
bour, but wouldn’t make a payment to Alice.

Although this attack disadvantages Bob, who didn’t explicitly choose to
trust OSIRIS, the attacker, it’s still the case that his trust in Alice was mis-
placed, as she was unable to keep her relays online when they were needed,
due to her misjudgement about OSIRIS’s trustworthiness. Although this
doesn’t expose circulex participants to attacks from people who are arbitrar-
ily distant in payment chains (which would be a severe flaw in circulex), it
does highlight that when choosing to trust someone, a circulex participant is
also, to a certain extent, choosing to trust their judgement. (This would be
true even in the absence of attacks like this one; by extending credit to some-
one, a participant is trusting that they won’t get into unsustainable debts
to other people, and that they won’t unduly rely on debts owed to them by
untrustworthy people.) Therefore, implementations must make this clear to
users.

OSIRIS could also attempt to block the complete agreement at a point
more distant from itself in the circular exchange, but it would need to know
which relays to attempt to take offline, and it would need to obtain this
information from the victim or one of the victim’s neighbours. One way of
achieving this would be to act as one of the relays for the victim or one of its
neighbours, but in any case, if the attack is successful, it will be because the
victim has trusted either OSIRIS itself or someone who shares information
with OSIRIS, and because the victim, or someone they trust, was unable
to keep their relays online at the crucial time. (This attack is also less
likely to succeed than the previous one, since the complete agreement will
be circulated not only by the relays of the participants in the chosen path,

77

but also by all of the relays of all of the potential participants, so there’s
a good chance that the complete agreement will find its way around the
hole OSIRIS has tried to punch in the network of relays, and therefore that
OSIRIS’s paywise neighbour will be expecting payment, according to the
relevant bilateral agreement.)

OSIRIS might also attempt attacks symmetrical to the ones described
above, by interfering with the progress of a second complete agreement for
a transaction, so that it reverses OSIRIS’s obligation to pay its paywise
neighbour, but fails to reverse OSIRIS’s talkwise neighbour’s obligation to
pay OSIRIS. Such attacks give rise to the same considerations as above, and
therefore no further requirements are necessary to prevent them.

6.1.2 Denial of service

Another of OSIRIS’s potential goals is the disruption of financial infras-
tructure, including circulex. Using generic denial-of-service attacks against
participants’ IP addresses might succeed in forcing those participants offline
during the attack, but circulex’s decentralized nature limits the effects (on
the network as a whole) of such attacks.

To try to affect the wider circulex network, OSIRIS might try making at-
tractive but insincere promises to take part in transactions, thus wasting the
resources of sincere would-be participants in the transactions. Circulex’s de-
sign prevents OSIRIS from promising attractive exchange rates (for example)
to transaction initiators without simultaneously making a firm commitment
to its neighbours, conditional on that path being chosen.

However, OSIRIS can still, as a transaction initiator, make insincere
pathfinding requests in an attempt to flood the network with partial agree-
ments that it has no intention of completing. This could cause congestion on
the network in a number of ways, such as the saturation of bandwidth lim-
its or participants’ maximumOutstanding limits. To prevent such an attack
from reaching the wider network, implementations must ensure that each
participant gives priority to partial agreements that are more likely to result
in circular exchanges involving that participant, based on the characteristics
of past successful and unsuccessful partial agreements, including at least the
participant’s immediate predecessors in those partial agreements. This will
limit the effects of network flooding so that it primarily disadvantages only
the attacker and those who are propagating the attack.

78

6.2 Big Brother

Big Brother is assumed to be a passive pervasive attacker, as defined in RFC
7624 [1]; we will also use that document’s definition of collaborator, which
includes unwitting collaborators. Big Brother wishes to use its surveillance
capacity to discover as much as possible about circulex activity — who ini-
tiated which transactions, the value and purposes of those transactions, who
trusts who, and so on.

If a participant’s own device is a collaborator, there’s very little that any
system can do to prevent Big Brother from obtaining a great deal of in-
formation about them, except to ensure that as little historical information
as possible is stored on the device when it’s first compromised. Therefore,
implementations should give users the option of automatic deletion of his-
torical information that’s been reconciled with the relevant peers’ views on
that information, and is therefore no longer required.

If a participant’s peer is a collaborator, Big Brother will be able to access
a lot of information about that participant’s interactions with that peer.
However, participants can partially protect themselves by hiding from their
peers information those peers don’t need, such as whether that participant
was the initiator of a particular transaction.

For this purpose, implementations should ensure that when a partici-
pant initiates a transaction, a random number of keys at the start of the path
are padding, before the first key that specifies a bilateral agreement with a
peer. This should be accompanied by corresponding random delays before
sending messages to those peers; these delays must be taken into account
when determining deadlines to put in relevant messages. Likewise, the ini-
tiator should simulate such phantom participants at the end of the path
when creating a complete agreement for the transaction.

If Big Brother’s surveillance is accompanied by laws prohibiting mere par-
ticipation in (as opposed to initiation of) some kinds of circulex transactions
(for example, those involving certain currencies), it might become desirable
for intermediate participants to include their own phantom participants in
paths, too. This won’t protect participants who send partial agreements di-
rectly to peers who are collaborators, but it might make it harder for Big
Brother to make inferences about its collaborators’ peers’ peers.

A participant’s peer acting as a collaborator will be able to reveal to
Big Brother the participant’s relays, and Big Brother might be able to infer
from this that there are likely to be financial trust relationships between the
participant and those relays. Therefore, implementations must make clear
to users that the identities of their chosen relays will be made known to their
other peers. Also, implementations that can act as relays must make clear

79

to users that use of this feature will reveal that relationship to the peers of
those it acts as relays for.

Via hints and partial and complete agreements, Big Brother will be able
to get certain kinds of information generated by participants quite distant
from it and any of its collaborators. For example, a characteristic nonstan-
dard currency used in hints might allow Big Brother to infer that multiple
transactions are associated with a single participant. Therefore, implemen-
tations must not include highly specific nonstandard currencies in hints
without first warning their users and obtaining their consent.

Big Brother might also glean information from the precise deadlines and
differences between them in transaction identifiers and bilateral agreements,
or even the exchange rates and fees apparent in some paths. Therefore,
implementations should add appropriate amounts of random noise to these
numbers, wherever it’s possible to do so while maintaining consistency with
the protocol and their users’ wishes.

As a passive pervasive attacker, Big Brother might be able to observe
the timing and sizes of messages sent between peers, even though the end-
to-end encryption will prevent it from directly reading the contents of those
messages. Participants who want to hide even the fact that their IP addresses
are communicating with their peers’ IP addresses should use some form of
indirect communication, such as onion routing; implementations should
provide this option for their users.

To make traffic analysis more difficult for Big Brother, implementations
may combine multiple messages into a single transport-layer transmission.
Random delays between receiving a message and sending any messages in
response might also make traffic correlation attacks more difficult; such de-
lays, if used, must be taken into account when sending latency reports and
making other commitments.

6.3 Goliath Corporation

Goliath Corporation wants to extract economic rents from transactions. It
might attempt to do so by dominating the circulex network, or, if it already
has (or expects to have) dominance in transactions outside circulex, it might
try to suppress the adoption of circulex.

6.3.1 Fear, uncertainty, and doubt

If it’s taking the latter path, Goliath Corporation is likely to try to portray
circulex as unsafe, unusable, and expensive, or as a haven for OSIRIS and
other criminals. To prevent such an attack, implementers must attempt to

80

make their implementations as secure and usable as possible, taking into ac-
count their intended use cases. Truth is the best possible defence against mis-
information about circulex, and Goliath Corporation might try to discredit
circulex by criticizing any false statements made in support of it; therefore,
promoters of circulex must not misrepresent or overstate its safety or other
features.

6.3.2 Circulex as a service

Goliath Corporation might try to gain dominance within circulex by offering
to participate in the circulex network on behalf of users, as a convenience
to them, so that they don’t have to participate in circulex using their own
devices. While there might be legitimate circumstances in which such a
service is desirable (to allow participation by people who don’t have access
to reliable electricity or internet service), it comes at the cost of the users’
privacy, and there are further downsides if any one such service provider
becomes very popular.

For example, if Goliath Corporation acquired such a service provider, it
would be likely to sell access to transaction data, further encroaching on
the users’ privacy. And even if Goliath Corporation doesn’t directly charge
its users for the service, its dominance could allow it to impose costs on
other circulex participants who want to make payments to (or receive them
from) Goliath Corporation’s users. When such participants bring this to the
attention of the relevant Goliath users, the response might very frequently be
something like “Why don’t you just get a Goliath account?”, thus imposing
social pressure in the service of further entrenching Goliath’s dominance.

In order to prevent this kind of de facto centralization of the network,
circulex-as-a-service software must not be implemented or deployed in a
way or at a time when it’s likely to result in any significant number of circulex
accounts being controlled by any one person or organization. The self-hosted
peer-to-peer model must be established as the normal mode of circulex use,
wherever this is possible.

6.3.3 Dominance of trust

Even without running circulex instances on behalf of its users, Goliath Corpo-
ration could obtain a kind of dominance in the circulex network if it acquires
control over circulex instances that have trust relationships with a significant
proportion of other circulex instances. This might give Goliath Corporation
sufficient transaction data to correlate with other internet traffic data in a
way that weakens circulex’s privacy properties.

81

Even if Goliath Corporation controls circulex instances that are trusted
only as relays by a significant number of circulex participants, it could try
to extract rents from this dominance by refusing to allow its relays to in-
teroperate with other relays that haven’t obtained expensive certification.
Alternatively, it might try to prevent certain groups of people from using
direct trust relationships with people who use Goliath relays.

In order to make the accumulation of such dominance less likely, imple-
mentations must not include any default or suggested relays or instances
to establish trust relationships with. However, implementations may include
suggestions of instances to make donations to or purchase unrelated goods
or services from.

6.3.4 Software dominance

Goliath Corporation might also try to exploit the circulex network by domi-
nating the implementations of the protocol.

It’s much easier for a single organization to bend software to its own
purposes, disregarding the interests of the end users, if that software is pro-
prietary, rather than open source. Therefore, circulex implementations must
not be encumbered by restrictions that inhibit the free use, study, modifi-
cation, or redistribution of the software.

However, so-called “intellectual property” isn’t the only way Goliath
might try to dominate circulex software. Goliath might try to distribute its
own open source circulex implementation, making it popular by any means
necessary, and then develop extensions to the protocol at a pace no other im-
plementers can keep up with, thus achieving an effective monopoly on circulex
software. To avoid this outcome, any future version of the circulex protocol,
including any optional extensions, must remain simple enough that an indi-
vidual or small team could reasonably be expected to be able to implement
it.

6.3.5 Peripheral services

Even if Goliath doesn’t directly participate in the circulex network, it might
obtain a lot of information from it by offering peripheral services (such as
accounting or data storage services) to a large number of organizations. From
these relationships, it could extract information about the identities of those
organizations’ customers and suppliers, and match the data from multiple
organizations by inspecting libp2p peer IDs, IP addresses, and sets of relays.
Goliath could then exploit this information for its own profit, to the detriment
of the privacy of circulex participants.

82

Such an attack could be mitigated by using a different ephemeral peer ID
for each purchase (while maintaining stable peer IDs with long-term peers),
and using onion routing for the connection with the vendor, or some other
means of hiding the customer’s IP address. It might be harder to prevent
Goliath from drawing inferences from participants’ sets of relays, but for a
participant with a large number of potential relays, there might be some ad-
vantage in using consistently different sets of relays with different vendors.

6.4 Combined threat

There’s another possible scenario worth considering, involving all three threats
— OSIRIS, Big Brother, and Goliath Corporation.

Big Brother might point to OSIRIS as a threat, and insist that, in order
to prevent OSIRIS from receiving funding and laundering the proceeds of
its crimes, all financial transactions must be closely monitored. Big Brother
might then establish regulations prohibiting anyone from transacting without
the authorization of the Beast (see chapter 13 of [12]).

Goliath is likely to lobby for these regulations to be wide-ranging and
difficult to implement, because this will increase the barriers its potential
competitors will face in entering the money transfer space. Such regula-
tions would thus make it easier for Goliath to monopolize money transfers,
and would allow it to claim that it’s not only permitted to accumulate vast
quantities of data about its customers’ behaviour, it’s obliged to do so.

Such regulations would also partially achieve OSIRIS’s denial-of-service
goal, by inhibiting the free flow of transactions in places OSIRIS wishes to
target.

There’s no particularly easy answer to the question of how to defend
against such an attack on circulex. Circulex is designed to be resistant to
surveillance, as discussed above, but this resistance has its limits. For exam-
ple, if a particularly authoritarian government bans all use of circulex, and
enforces the ban by using random physical spot checks of people’s devices,
freedom-lovers in that place will need to weigh up the risks and benefits of
using circulex.

In places where freedom and democracy are presently valued, a good pre-
emptive defence might involve highlighting circulex’s usefulness to people in
more authoritarian countries who also value such ideals. In many situations,
it might be worth portraying circulex as a piece of infrastructure, like roads,
electricity networks, or the internet. While such facilities certainly can be
used by organizations like OSIRIS for nefarious purposes, cumbersome re-
strictions on their use would do far more to harm peaceful people than to
protect them. It might also be worth ridiculing the idea of heavy regula-

83

tion and surveillance of friendly IOUs between family members and other
acquaintances.

References

[1] Richard Barnes et al. Confidentiality in the Face of Pervasive Surveil-
lance: A Threat Model and Problem Statement. August 2015. RFC 7624.

[2] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Re-
source Identifier (URI): Generic Syntax. January 2005. STD 66.

[3] Daniel J. Bernstein. TAI64, TAI64N, and TAI64NA. url: https://
cr.yp.to/libtai/tai64.html (visited on 2016-05-12).

[4] Daniel J. Bernstein et al. EdDSA for more curves. July 4, 2015. url:
http://ed25519.cr.yp.to/eddsa-20150704.pdf (visited on 2015-
10-22).

[5] Scott Bradner. Key words for use in RFCs to Indicate Requirement
Levels. March 1997. RFC 2119.

[6] Scott Bradner and Barry Leiba. Key words for use in RFCs to Indicate
Requirement Levels. May 2017. BCP 14.

[7] Morris J. Dworkin. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Federal Information Processing Standards
Publication 202. Information Technology Laboratory, National Insti-
tute of Standards and Technology, August 4, 2015. doi: 10.6028/
NIST.FIPS.202. url: https://www.nist.gov/customcf/get_pdf.
cfm?pub_id=919061 (visited on 2015-10-15).

[8] Jasper Fforde. The Eyre Affair. Hodder and Stoughton, July 19, 2001.

[9] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impos-
sibility of Distributed Consensus with One Faulty Process”. In: Jour-
nal of the Association for Computing Machinery 32.2 (April 1985),
pages 374–382. url: http://groups.csail.mit.edu/tds/papers/
Lynch/jacm85.pdf (visited on 2015-07-10).

[10] Mike Goelzer, Yusef Napora, and Marcin Rataj. Peer Ids and Keys.
Version r1. August 15, 2019. url: https://github.com/libp2p/
specs/blob/master/peer-ids/peer-ids.md (visited on 2020-09-15).

[11] Jana Iyengar and Martin Thomson, editors. QUIC: A UDP-Based Mul-
tiplexed and Secure Transport. June 10, 2020. url: https://datatracker.
ietf.org/doc/draft-ietf-quic-transport/ (visited on 2020-09-
04).

84

https://tools.ietf.org/html/rfc7624
https://tools.ietf.org/html/std66
https://cr.yp.to/libtai/tai64.html
https://cr.yp.to/libtai/tai64.html
http://ed25519.cr.yp.to/eddsa-20150704.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/bcp14
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://www.nist.gov/customcf/get_pdf.cfm?pub_id=919061
https://www.nist.gov/customcf/get_pdf.cfm?pub_id=919061
http://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/

[12] John. Revelation. In: Holy Bible, New Living Translation. Translated by
Tyndale House Foundation. Tyndale House, 2015. url: https://www.
biblegateway.com/passage/?search=Revelation+13&version=NLT

(visited on 2022-09-06).

[13] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings.
October 2006. RFC 4648.

[14] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
Generals Problem”. In: ACM Transactions on Programming Languages
and Systems 4.3 (July 1982), pages 382–401. url: http://research.
microsoft.com/en-us/um/people/lamport/pubs/byz.pdf (visited
on 2015-07-09).

[15] Barry Leiba. Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words. May 2017. RFC 8174.

[16] libp2p specification. Protocol Labs. August 31, 2020. url: https://
github.com/libp2p/specs (visited on 2020-09-04).

[17] Andrew Longacre Jr. and Rob Hussey. “Two dimensional data encod-
ing structure and symbology for use with optical readers”. US5591956A.
January 7, 1997.

[18] Timothy James McKenzie Makarios. Chunky Base b Encodings. Ver-
sion 1.0.0-0.0.1. August 2021. url: https://circulex.nz/chunky-
base-b.html (visited on 2021-08-10).

[19] David Mazières. The Stellar Consensus Protocol. A Federated Model
for Internet-level Consensus. Version July 14, 2015 DRAFT. July 14,
2015. url: https://www.stellar.org/papers/stellar-consensus-
protocol.pdf (visited on 2015-07-16).

[20] Jan Michelfeit. “Security and Routing in the Ripple Payment Net-
work”. Master’s thesis. Brno: Masaryk University, 2011. url: https:
//is.muni.cz/th/139865/fi_m/dp_139865.pdf?lang=en (visited
on 2017-04-20).

[21] Dr. David L. Mills et al. Network Time Protocol Version 4: Protocol and
Algorithms Specification. Edited by Jim Martin. June 2010. RFC 5905.

[22] Multiaddr. The Multiformats Project. January 30, 2020. url: https:
//multiformats.io/multiaddr/ (visited on 2020-09-15).

[23] Multibase. The Multiformats Project. April 21, 2021. url: https://
github.com/multiformats/multibase (visited on 2021-08-10).

85

https://www.biblegateway.com/passage/?search=Revelation+13&version=NLT
https://www.biblegateway.com/passage/?search=Revelation+13&version=NLT
https://tools.ietf.org/html/rfc4648
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
https://tools.ietf.org/html/rfc8174
https://github.com/libp2p/specs
https://github.com/libp2p/specs
https://circulex.nz/chunky-base-b.html
https://circulex.nz/chunky-base-b.html
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://is.muni.cz/th/139865/fi_m/dp_139865.pdf?lang=en
https://is.muni.cz/th/139865/fi_m/dp_139865.pdf?lang=en
https://tools.ietf.org/html/rfc5905
https://multiformats.io/multiaddr/
https://multiformats.io/multiaddr/
https://github.com/multiformats/multibase
https://github.com/multiformats/multibase

[24] multicodec/table.csv. The Multiformats Project. August 21, 2020. url:
https://github.com/multiformats/multicodec/blob/master/

table.csv (visited on 2020-09-02).

[25] Multihash. The Multiformats Project. May 10, 2020. url: https://
multiformats.io/multihash/ (visited on 2020-09-02).

[26] Yusef Napora. Connection Establishment in libp2p. Version r0. June 20,
2019. url: https://github.com/libp2p/specs/blob/master/
connections/README.md (visited on 2020-10-30).

[27] Thomas Narten. Assigning Experimental and Testing Numbers Consid-
ered Useful. January 2004. BCP 82.

[28] George Orwell. Nineteen Eighty-Four. Secker & Warburg, June 8, 1949.

[29] p2p-circuit relay. Protocol Labs. June 29, 2021. url: https://github.
com/libp2p/specs/tree/master/relay (visited on 2021-08-18).

[30] Tom Preston-Werner et al. Semantic Versioning. Version 2.0.0. June
2020. url: https://semver.org/spec/v2.0.0.html (visited on
2020-10-30).

[31] Mohammed El-Qorchi. “Hawala”. In: Finance & Development 39.4
(December 2002). url: https://www.imf.org/external/pubs/
ft/fandd/2002/12/elqorchi.htm (visited on 2022-09-28).

[32] Henry Robinson. A Brief Tour of FLP Impossibility. August 13, 2008.
url: http://the-paper-trail.org/blog/a-brief-tour-of-flp-
impossibility/ (visited on 2015-07-10).

[33] Rumplepay. About Rumplepay. url: https://rumplepay.com/about/
(visited on 2022-09-28).

[34] Markus W. Scherer and Mark Davis. BOCU-1: MIME-compatible Uni-
code Compression. Version 2. February 4, 2006. url: https://unicode.
org/notes/tn6/ (visited on 2021-12-08).

[35] SIX Interbank Clearing AG, editor. Current currency & funds code
list. url: https://www.currency-iso.org/en/home/tables/table-
a1.html (visited on 2020-06-04).

[36] Stellar Development Foundation. Stellar - an open network for money.
November 18, 2022. url: https://stellar.org/ (visited on 2022-11-
21).

[37] stellarbeat.io. Network explorer. November 21, 2022. url: https://
stellarbeat.io/ (visited on 2022-11-21).

86

https://github.com/multiformats/multicodec/blob/master/table.csv
https://github.com/multiformats/multicodec/blob/master/table.csv
https://multiformats.io/multihash/
https://multiformats.io/multihash/
https://github.com/libp2p/specs/blob/master/connections/README.md
https://github.com/libp2p/specs/blob/master/connections/README.md
https://tools.ietf.org/html/bcp82
https://github.com/libp2p/specs/tree/master/relay
https://github.com/libp2p/specs/tree/master/relay
https://semver.org/spec/v2.0.0.html
https://www.imf.org/external/pubs/ft/fandd/2002/12/elqorchi.htm
https://www.imf.org/external/pubs/ft/fandd/2002/12/elqorchi.htm
http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/
http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/
https://rumplepay.com/about/
https://unicode.org/notes/tn6/
https://unicode.org/notes/tn6/
https://www.currency-iso.org/en/home/tables/table-a1.html
https://www.currency-iso.org/en/home/tables/table-a1.html
https://stellar.org/
https://stellarbeat.io/
https://stellarbeat.io/

[38] unsigned-varint. The Multiformats Project. July 8, 2020. url: https:
//github.com/multiformats/unsigned-varint (visited on 2020-09-
02).

[39] Henry de Valence, Isis Lovecruft, and Tony Arcieri. The Ristretto Group.
url: https://ristretto.group/ (visited on 2020-03-17).

[40] Ian Vásquez and Tanja Porcnik. Human Freedom Index. 2019. url:
https://www.cato.org/human- freedom- index- new (visited on
2020-09-11).

[41] X.680 : Information technology — Abstract Syntax Notation One (ASN.1):
Specification of basic notation. The International Telecommunications
Union — Telecommunication Standardization Sector. August 13, 2015.
url: https://handle.itu.int/11.1002/1000/12479 (visited on
2020-02-14).

[42] X.681 : Information technology — Abstract Syntax Notation One (ASN.1):
Information object specification. The International Telecommunications
Union — Telecommunication Standardization Sector. August 13, 2015.
url: https://handle.itu.int/11.1002/1000/12480 (visited on
2020-02-21).

[43] X.682 : Information technology — Abstract Syntax Notation One (ASN.1):
Constraint specification. The International Telecommunications Union
— Telecommunication Standardization Sector. August 13, 2015. url:
https://handle.itu.int/11.1002/1000/12481 (visited on 2020-02-
14).

[44] X.696 : Information technology — ASN.1 encoding rules: Specification
of Octet Encoding Rules (OER). The International Telecommunica-
tions Union — Telecommunication Standardization Sector. August 13,
2015. url: https://handle.itu.int/11.1002/1000/12487 (visited
on 2020-02-26).

[45] François Yergeau. UTF-8, a transformation format of ISO 10646. Novem-
ber 2003. RFC 3629.

87

https://github.com/multiformats/unsigned-varint
https://github.com/multiformats/unsigned-varint
https://ristretto.group/
https://www.cato.org/human-freedom-index-new
https://handle.itu.int/11.1002/1000/12479
https://handle.itu.int/11.1002/1000/12480
https://handle.itu.int/11.1002/1000/12481
https://handle.itu.int/11.1002/1000/12487
https://tools.ietf.org/html/rfc3629

	Introduction
	Payments through chains of trust
	Problems and existing solutions
	Overview of circulex's solution
	Decomposing circular exchanges
	Avoiding the FLP impossibility result
	Speed, safety, and liveness
	Pathfinding
	Uniqueness and reversibility
	Privacy

	Typical operation
	Establishing relationships
	Human interactions
	Computer interactions

	Pathfinding
	Human interactions
	Computer interactions

	Execution
	Human interactions
	Computer interactions

	Missing messages

	Prerequisites and other standards
	BCP 14
	ASN.1
	Timekeeping
	Hashes
	Signature scheme
	Communication with peers

	Definitions
	Identity
	Contact details
	Currency
	Amount
	Target
	Reference header
	Payment request
	URI scheme
	Path types
	Transaction identifier
	Signed payment path

	Messages
	Invitation
	Bandwidth limit
	Invitation

	Statement
	Statement subject
	Range
	Statement

	Relay offer
	Latency probability object
	Relay offer

	Ping
	Pong
	Relay request
	Relay request context
	Relay request

	Relay peering message
	Latency report
	Latency profile
	Latency report

	Relay rejection
	Hint
	Hint subject
	Hint body
	Hint

	Partial agreement
	Payment specification
	Bilateral agreement
	Partial agreement

	Complete agreement
	Executing a transaction
	Reversing a transaction
	Committing to non-execution
	Partially executing a transaction
	Partially reversing a transaction

	Receipt
	Tally
	Missing information request
	Request for invitation
	Request for statements
	Request for hint
	Request for partial agreement
	Request for receipts
	Request for tally

	Freeze message

	Security considerations
	OSIRIS
	Theft
	Denial of service

	Big Brother
	Goliath Corporation
	Fear, uncertainty, and doubt
	Circulex as a service
	Dominance of trust
	Software dominance
	Peripheral services

	Combined threat

